
Detection and Classification of Acoustic Scenes and Events 2023 Challenge

FRAUNHOFER FKIE SUBMISSION FOR TASK 5: FEW-SHOT BIOACOUSTIC EVENT
DETECTION

Technical Report

Kevin Wilkinghoff and Alessia Cornaggia-Urrigshardt

Fraunhofer FKIE
Fraunhoferstraße 20, 53343 Wachtberg, Germany

{kevin.wilkinghoff,alessia.cornaggia-urrigshardt}@fkie.fraunhofer.de

ABSTRACT
This report describes the Fraunhofer FKIE submission for task 5
“Few-shot Bioacoustic Event Detection” of the DCASE challenge
2023. The submitted system is an adaptation of a few-shot key-
word spotting system that uses embeddings with a temporal reso-
lution suitable for template matching with dynamic time warping.
The embedding model is trained to not only predict the sound event
class but also the temporal position of a segment in a sound event
using the angular margin loss TempAdaCos. At inference, embed-
dings are extracted and segment-wise cosine distances between the
recording to be searched in and the provided templates are calcu-
lated. The resulting cost matrices are processed by applying a logis-
tic regression model that is trained to discriminate between positive
and negative frames. Lastly, dynamic time warping in combination
with peak-picking and using a decision threshold is applied to de-
tect on- and offsets of bioacoustic events. As a result, the presented
system significantly outperforms both baseline systems.

Index Terms— bioacoustics, sound event detection, few-shot
learning, representation learning, machine listening

1. INTRODUCTION

Biologists often collect large amounts of data to increase the like-
lihood that the events of interest for a specific research project are
being captured. Possible ways to do this is to use bioacoustic sen-
sors belonging to a (multisensor) station with a fixed position [1] or
sensors attached to an individual specimen [2]. However, since the
sensors are not supervised, large parts of the recordings do not con-
tain bioacoustic events or at least not the ones of interest. To reduce
manual labeling work and thus the required time biologists need to
analyze an audio recording, bioacoustic events should be annotated
automatically. This motivates bioacoustic monitoring as an area of
machine listening research [3, 4, 5]. The main problems of this
field are complex acoustic scenes, varying acoustic conditions and
recording devices, very limited amounts of training data (few-shot
learning [6]) and very different characteristics such as the duration
of animal vocalizations. All of these problems are addressed in the
few-shot bioacoustic event detection task of the DCASE challenge
2023 and its predecessors [7, 8]. The goal of these tasks is to de-
tect all vocalizations of an animal together with the corresponding
on- and offsets within in a recording of possibly long duration by
using only the first five annotated sound events in the same record-
ing belonging to the same species. To train and develop the system,
multiple fully labeled recordings containing mostly other animals
than those to be detected are provided.

Classically, automatic systems for detecting bioacoustic events
are based on template matching with dynamic time warping (DTW)
applied to spectral data representations [9, 10] or auto-correlation
[11, 12]. Template matching has the advantage that varying lengths
between animal calls can be handled effectively and that no train-
ing is required. However, in case of changing or difficult acoustic
conditions these approaches quickly fail. Moreover, determining
a single feature representations suitable for detecting very differ-
ent species via template matching is a challenge. Modern systems
utilize deep learning based models [13]. For few-shot learning, of-
ten convolutional neural networks (CNNs) with a prototypical loss
[14] are used to learn a suitable embedding space and some form
of sliding window is used to detect events [15, 16, 17, 18]. Here,
choosing the size of the sliding window is one of the main difficul-
ties because of the strongly varying durations of calls belonging to
different species. In [16] an ensemble of multiple models trained
on different segment lengths is used and in [18] individual frames
of the spectral representations are used directly to avoid the need
to choose a specific length. For the DCASE challenge task, both
approaches, template matching and a prototypical network, are pro-
vided as baseline systems [7, 8].

The contributions of this work are the following. First and fore-
most, a state-of-the art few-shot bioacoustic event detection sys-
tem submitted to task 5 of the DCASE challenge 2023 is presented.
The system learns embeddings with temporal structure using the
TempAdaCos loss [19], which has been developed for few-shot
keyword spotting (KWS), and applies DTW to detect bioacoustic
events. Hence, the strengths of both bioacoustic event detection
approaches, learning embeddings as robust feature representations
and applying template matching to effectively detect events, are
combined into a single system. To improve the performance for
this task, adaptions of the original work are proposed, namely us-
ing other input feature representations and a different procedure for
calculating cost matrices and detecting on- and offsets of events.

2. PROPOSED SYSTEM

The structure of the proposed system is depicted in Figure 1. Each
of the four depicted processing steps will now be described in detail.

2.1. Calculating input feature representations

To obtain input feature representations for the embedding model,
the following processing steps have been carried out. First, the au-
dio signal is normalized to a maximum amplitude of 1, resampled to
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Figure 1: Main processing steps of the proposed few-shot bioacoustic event detection system.

22 050Hz and high-pass filtered at 50Hz. Then, Mel-spectrograms
are calculated using a window size of 512 and a hop size of 128
with 64 Mel bins to have a sufficiently high time resolution. Last
but not least, per-channel energy normalization (PCEN) [20, 21]
is applied as done for most other systems such as the prototypical
baseline systems [7, 8].

One of the major difficulties to overcome when detecting differ-
ent bioacoustic events with a single system are the different lengths
of individual events ranging from a few milliseconds to several sec-
onds. To be able to handle different lengths, the computed features
are divided into overlapping segments along the temporal dimen-
sion. As also proposed for the prototypical baseline system [8], we
applied an adaptive segment length depending on the size of the five
labeled events. More concretely, we used one percent of the maxi-
mum of all event lengths while ensuring a minimum segment length
of 0.1 s and an overlap of half the chosen segment size. Events with
a total length shorter than 0.1 s are zero-padded to the desired seg-
ment length. As the result, all feature representations have a size of
66 × 64. Note that for training the embedding model, not only the
class label of the bioacoustic event but also the position of a given
segment within an event is used and thus needs to be stored as an
additional label. Due to the chosen size of the segment lengths, this
corresponds to 200 possible positions that are encoded as categori-
cal labels with 200 entries. For short sound events, multiple or even
all positions may be encoded as “active” in the categorical label.
More details can be found in [19].

2.2. Extracting embeddings with temporal dimension

To extract embeddings, a very similar procedure as explained in our
prior work on few-shot KWS is applied [22, 19]. The model has the
modified ResNet architecture used in [22] and is trained by min-
imizing the angular margin loss (AML) TempAdaCos [19], which
teaches the model to learn embeddings with temporal structure. The
main differences between using AMLs and prototypical losses [14]
for few-shot learning are that for AMLs the embeddings are pro-
jected onto the unit sphere and a margin between classes is ensured.
Furthermore, for AMLs the randomly initialized class centers of the
embedding space are learned during training as trainable model pa-
rameters instead of being re-calculated after each epoch as the mean
of embeddings belonging to a support set. After training, a mean
embedding can be calculated in the same manner regardless of the
loss being used. Thus, for balanced classes an AML has no disad-
vantage over a prototypical loss and one could also easily formulate
an angular prototypical loss [23].

For the presented system, the learned embeddings have a fea-
ture dimension of 128 and the same temporal dimension (T = 66)
as the input feature representations. This is achieved by not ap-
plying any temporal pooling operation or strides inside the CNN,

similarly as proposed in [18] and, before that, in [22]. TempAda-
Cos consists of a sum of two loss functions, one for predicting the
sound event class and one for the temporal position of the segment
in a sound event. Let ek,j denote an embedding computed for the
jth segment (in temporal order) of the kth training sample. Then,
the softmax probability of ek,j belonging to class iclass and position
ipos is defined as

sk,j(iclass, ipos) :=
exp(ŝ · θk,j(iclass, ipos))∑Nclass

jclass=1

∑Npos
jpos=1 exp(ŝ · θk,j(jclass, jpos))

where ŝ denotes the dynamically adaptive scale parameter of the
AdaCos loss [24]. The cosine angles between embedding ek,j and
class center ciclass,ipos are defined as the mean cosine similarity over
the time dimension:

θk,j(iclass, ipos) :=
1

T

T∑
t=1

⟨ek,j(t), ciclass,ipos⟩
∥ek,j(t)∥2∥ciclass,ipos∥2

.

As for standard angular margin losses, the class centers ciclass,ipos

do not have a temporal dimension and are randomly initialized pa-
rameters of the model adapted during training. Now, the prob-
ability of embedding ek,j belonging to class iclass is set to be∑Npos

ipos=1 sk,j(iclass, ipos). Similarly, the probability of embedding

ek,j belonging to position ipos is equal to
∑Nclass

iclass=1 sk,j(iclass, ipos).
The embedding model is trained to solve both classification tasks
simultaneously by minimizing the sum of both corresponding
categorical cross-entropies. After training, all resulting two-
dimensional embeddings belonging to overlapping segments are
combined into one large two-dimensional embedding by taking the
mean of all individual frames belonging to exactly the same tempo-
ral position. More technical details about TempAdaCos and how to
combine the embeddings can be found in [19].

The embedding model is trained using all annotated positive
and negative events of the training set as also done in [17]. Fur-
thermore, temporally reversed segments of the training samples are
used for training as proposed in [19]. For each original class, all
temporally reversed segments belonging to this class are labeled as
belonging to a specific, newly introduced class, doubling the num-
ber of sound event classes. The position of temporally-reversed
segments is not of interest and encoded to have the same value for
each categorically labeled position, i.e. N−1

pos . For clarification we
note that time-reversed versions of the acoustic events are included
here in order to train the network to better recognize the correct
temporal structure of the acoustic events. Consequently, the time-
reversed events are *not* considered to belong to the same class as
the original, non reversed, events As a result, training the embed-
ding model can be seen as a combination of supervised and self-
supervised learning because for every segment the model needs to
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predict 1) its sound event class (supervised) as well as the 2) rel-
ative position in the non-segmented sound event (self-supervised)
and 3) determine whether the temporal order is reversed or not (self-
supervised). This leads to learning more meaningful embeddings
than when only using a supervised training procedure and signifi-
cantly improves few-shot sound event detection performance [19].
For data augmentation, mixup [25] with a mixing coefficient drawn
from a uniform distribution and SpecAugment [26] have been ap-
plied. Since using an adaptive scale parameter for TempAdaCos as
proposed in [24] led to numerical issues during training, we used
ArcFace [27], i.e. TempArcFace, with a margin of 0.2 and a fixed
scale parameter ŝ =

√
2 · log(Nclass − 1) instead. To train the em-

bedding model, undersampling with respect to the sound event class
labels as implemented in [28] has been used. The model has been
trained for 10000 epochs with a batch size of 64 using Adam [29].

2.3. Calculating cost matrices

When interpreting animal calls as keywords, the bioacoustic event
detection task can be viewed as finding any keyword emitted by
a certain animal instead of finding specific keywords. Thus, the
global structure can strongly vary between different calls. There-
fore, we do not directly match the templates to the corresponding
recording by using frame-wise cosine distances to compute a cost
matrix as done for KWS but use the steps shown in Figure 2. Note
that local temporal structures of the input feature representations
are captured by the CNN and thus are still being used as they are
contained in the embeddings.

In [18], it has been shown that calibrating the distances by dif-
ferentiating between positive and negative frames is highly benefi-
cial to improve the performance [18]. Here, negative frames belong
to the spectral features of annotated events and negative frames to
the spectral features between these annotated events. Instead of us-
ing a softmax function to calibrate the similarity scores, we used
a logistic regression model. More concretely, we used maximum
and minimum of cosine similarities between positive and negative
frames from the labeled parts of a recording, and the parts of the
recordings to be searched through for animal calls. This translates to
obtaining 4 dimensional features for each time step as input features
for the logistic regression model. The logistic regression model is
trained to predict whether a time step belongs to a target event or not
with L2 regularization and balanced class weights as implemented
in scikit-learn [30]. Last but not least, the ratio of the positive and
negative log-likelihoods from the logistic regression model are used
as cost values instead of only using one of the probabilities. All
steps of computing cost matrices are visualized in Figure 2. Note
that when training the logistic regression model, the mean of the
positive frames is taken to not only have similarity scores that are
equal to one and thus are far too optimistic. At inference, for each
time step the maximum cosine similarity belonging to each template
is taken instead. The idea is that we want to compute cost matrices
for DTW but, as explained above, not enforce the same global tem-
poral structure of the templates. To still be able to apply DTW, a
template size greater than one is simulated by simply repeating the
costs of each time step until the desired size is reached. Choosing
a size related to the real template sizes appears to be a reasonable
choice because this means that detected events need to have a sim-
ilar size as the five labeled events. For the challenge, we submitted
several systems with different sizes as stated in subsection 2.5.

2.4. Detecting acoustic events

To detect acoustic events as well as their on- and offsets, DTW with
allowed steps of (1, 1), (1, 2) and (2, 1) is used. This means that
the length of detected events can only be between 50% and 200%
of the chosen template size and helps to reduce false positive de-
tections. A larger template size can be considered more conserva-
tive but most likely increases the number of false negative detec-
tions. The entire proces of computing cost matrices is illustrated
in Figure 3. First, the accumulated cost matrix with each entry be-
ing normalized by the corresponding path length is calculated. The
element-wise negative of the last row is used as a matching func-
tion. Then, a chosen decision threshold is used to only consider
matches with a score above this threshold. Next, peak-picking with
a width of 8 and a distance of 2 is applied. At each peak, optimal
warping paths are computed whose start- and endpoints are the on-
and offsets of acoustic events. To make up for the temporal fuzzi-
ness caused by the size of the spectral window, on- and offsets are
moved by 4·128

22050
to the left and 12·128

22050
to the right, respectively. Last

but not least, events with invalid start- and endpoints are removed
and events with a margin less than 8·128

22050
between them are merged.

Note that by merging events with overlapping paths, detected events
can also be longer than 200% of the chosen template size but still
not be shorter than 50%.

2.5. Submissions

In total, we submitted four different systems each with different hy-
perparameter settings shown in Table 1. As explained above, by de-
sign our system cannot detect events shorter than half of the chosen
template size. Thus, this hyperparameter has a strong impact on the
performance which is the reason why we dedicated three submis-
sions to altering the template size and only a single one to changing
the decision threshold.

Table 1: Parameter settings of the submitted systems.
System Template Size for DTW Threshold

Submission 1 0.5·mean size of five shots -0.05
Submission 2 0.5 · (mean + minimum) size of five shots -0.05
Submission 3 0.5 · (mean + maximum) size of five shots -0.05
Submission 4 0.5·mean size of five shots -0.075

3. RESULTS

The results obtained on the validation set with our four submitted
systems and the two baseline systems of the challenge are shown in
Table 2. Since the validation set of the DCASE 2023 challenge is
the same as the validation set of last year’s edition of the challenge,
the performances of the three top-performing systems of DCASE
2022 have also been included for comparison. It can be seen that our
proposed systems all significantly outperform both baseline systems
and reach a similar F-measure as the three top-performing systems
of last year. Note that in past editions of this challenge task the
ranking of systems according to the performance obtained on the
validation set was often very different from the final ranking on the
evaluation set. Thus, one should not draw conclusions too quickly
but only view the performance on the validation set as a rough pre-
diction. Furthermore, this year it is explicitly not allowed to use
an ensemble of multiple models for prediction, which is known to
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(1) training the logistic regression model for cost calibration

(2) computing cost matrices using the trained logistic regression model at inference

negative frames
of labeled part
(Kneg × 128)

apply K-means
(8 × 128)

positive frames
of labeled part
(Kpos × 128)

compute mean
(1 × 128)

compute cosine
similarities

(Klab × 8) and
(Klab × 1)

labeled part
of recording
(Klab × 128)

get maximum
and minimum

(Klab × 2)

repeat all
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regres-

sion model
(Klab × 2)

negative frames
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(Kunlab × 2)

get maximum
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(Kunlab × 2)
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Figure 2: Illustration of the proposed steps for calculating cost matrices. Subfigure (1) contains all steps to train the cost calibration model
and subfigure (2) contains all steps to obtain cost matrices at inference. Blocks colored in red are only related to negative frames, blocks
colored in blue are only related to positive frames and yellow blocks are related to both.

Figure 3: Illustration of the proposed procedure for detecting on- and offsets of the acoustic events using DTW applied to the cost matrices
and additional post-processing.

Table 2: Performance of both baseline systems, the three top-ranked
systems of the DCASE Challenge 2022 and our submitted systems
on the validation set.

System Precision Recall F-measure

Template Matching (Baseline) 2.4% 18.3% 4.3%
Prototypical Network (Baseline) 36.3% 25.0% 29.6%

DCASE 2022 Rank 1 [18] 77.5% 71.5% 74.4%
DCASE 2022 Rank 2 [17] 55.0% 45.9% 50.0%
DCASE 2022 Rank 3 [16] unknown unknown 60.0%

Submission 1 70.2% 58.4% 63.7%
Submission 2 74.3% 54.9% 63.2%
Submission 3 79.1% 46.1% 58.2%
Submission 4 62.4% 62.3% 62.4%

increase performance, whereas it was allowed last year. Taken this
into account, it appears that our proposed system also reaches state-
of-the-art performance. The final results of the challenge will give
more insights on whether this claim is actually true.

4. CONCLUSIONS

In this work, a few-shot bioacoustic event detection system for task
5 of the DCASE challenge 2023 has been presented. The system
is based on extracting embeddings with temporal structure, calcu-
lating suitable cost matrices and detecting on- and offsets of events
with dynamic time warping. In experiments, it has been shown that
the proposed approach significantly outperforms both baseline sys-
tems of the challenge and reaches a similar performance as the three
top-performing systems of last year’s challenge on the validation
set. For future work, it is planned to conduct several ablation stud-
ies to justify the proposed design choices and compare the perfor-
mance of the system to other submitted systems on the evaluation
set of this DCASE task.

5. REFERENCES
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