
Handling Domain Shifts for Anomalous Sound Detection: A Review

Kevin Wilkinghoff1, Takuya Fujimura2, Keisuke Imoto3, Jonathan Le Roux4
1 Aalborg University and Pioneer Centre for AI, Aalborg, Denmark, email: kevin.wilkinghoff@ieee.org

2 Nagoya University, Nagoya, Aichi, Japan email: fujimura.takuya@g.sp.m.is.nagoya-u.ac.jp
3 Doshisha University, Kyotanabe, Kyoto, Japan, email: keisuke.imoto@ieee.org

4 Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA, USA, email: leroux@merl.com

Abstract
When detecting anomalous sounds in possibly complex
environments, one of the main difficulties is that trained
models need to be sensitive to subtle differences of mon-
itored target signals. At the same time, for many prac-
tical applications these models should be insensitive to
changes of the acoustic domain. Examples of these do-
main shifts are changing the microphone or the location
of acoustic sensors, which both may have a much stronger
impact on the acoustic signal than subtle anomalies.
Moreover, users want to train a model only with a rel-
atively large collection of source domain data. Further-
more, such a trained model should be able to generalize
well to any unseen domain by only providing very few
samples of the target domain to define how acoustic sig-
nals in this domain sound like. In this work, we review
and discuss recent publications focusing on this domain
generalization problem for anomalous sound detection in
the context of the DCASE challenges on acoustic machine
condition monitoring.

Introduction
Anomalous sound detection (ASD) has many applica-
tions. Examples are acoustic monitoring of machines
[22, 8, 9, 32], health [27], roads [12], smart home en-
vironments [45] or public places [19]. The goal of all
these applications is to distinguish between normal and
anomalous audio recordings. Usually, ASD systems are
trained with normal data exclusively as anomalous data
is often difficult and costly to obtain.

One of the major difficulties that ASD systems need to
overcome are the so-called domain shifts. These changes
of the recorded audio signals are caused by changes of the
acoustic environment, sensors, or properties of monitored
sound sources themselves. Inherently, domain shifts have
a strong impact on the audio signals and therefore also
affect the outcomes of ASD systems if no precautions are
taken. However, for many applications, this effect is not
desirable and should be suppressed. Ideally, trained ASD
systems are completely insensitive to domain shifts. At
the same time, ASD systems should be very sensitive to
modifications of the monitored target signals that indi-
cate the occurrence of application-dependent anomalies.

This manuscript reviews the latest work on handling do-
main shifts for ASD in the context of the annual DCASE
challenge [26]. To this end, the two main topics domain
adaptation and domain generalization will be discussed
by defining these terms, listing publicly available datasets
and recently published works related to these topics.

Domain Shifts
In general, samples that serve as input to an ASD system
consist of audio signals or features derived from them. It
is possible that the acoustic environment changes causing
the underlying audio signals to be altered without chang-
ing the intrinsic properties that define them to be normal
or anomalous. Examples are changing the microphones
or their locations, including or removing other sound
sources, or modifying certain properties of the monitored
sound sources themselves, e.g., changing the settings of
monitored machines. Such changes in the acoustic envi-
ronment occurring between a source domain and a target
domain constitute a so-called domain shift. In addition
to the acoustic differences of both domains, the domains
also differ in the number of available training samples.
For the source domain, there are sufficiently many train-
ing samples available and for the target domain, only a
few training samples are available because collecting suf-
ficiently many samples after a domain shift occurred is
impractical.

The most severe consequence of domain shifts related to
the strong differences in signal space is that the anomaly
scores are usually also distributed very differently in both
domains. This is called domain mismatch. Since the em-
bedding models were trained without data belonging to
the target domain, the two anomaly score distributions
belonging to normal and anomalous samples are not well-
separated in the target domain, which inherently leads to
a worse ASD performance as in the source domain. Fur-
thermore, the optimal decision thresholds differ in both
domains, which degrades the performance even more if a
single decision threshold is used.

Domain Adaptation
One way to handle domain shifts is to adapt an existing
ASD system that was trained on a source domain to a
particular target domain. Here, the main challenge is
that the training set for the target domain consists of only
very few samples and thus knowledge from the source
domain, which may differ substantially from the target
domain, has to be transferred somehow to obtain a well-
performing system. Note that once a system is adapted
to a target domain, it does not need to still perform well
in the source domain for which it was initially trained.

Datasets
A dataset focusing on handling domain shifts for ASD
through domain adaptation is the DCASE2021 ASD
dataset [22]. This dataset contains 10 s recordings of five
different machine types from MIMII DUE [35] and two
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additional machine types from ToyAdmos2 [17] that are
combined with background noise from real factories. The
dataset is divided into a development set and an evalua-
tion set, which both contain three sections for each ma-
chine type. These sections are specific partitions of the
dataset for calculating the performance and may con-
tain recordings from multiple machines of the same type.
Furthermore, both the development and evaluation set
consist of a training split and a test split. The training
splits contain only normal data, of which 1000 samples
belong to the source domain and only 3 samples belong to
the target domain, resulting in a very imbalanced dataset
in view of domain. For each training file, additional at-
tribute information about machine settings or the acous-
tic environment are provided that can be used to train
the ASD systems. The test splits contain 200 samples for
each domain, of which one half are normal and the other
half are anomalous. For each test file, it is known whether
these files belong to the source or the target domain, but
it is unknown whether they are normal or anomalous.

Approaches
Approaches for domain adaptation mostly focus on first
training an ASD system with data from the source do-
main and then adapting this trained system to a spe-
cific target domain. One possibility of doing this is to
fine-tune an entire model that was trained in the source
domain with data belonging to the target domain [6].
This changes the problem of balancing the very differ-
ently sized training datasets of both domains to a prob-
lem of preventing the model from overfitting to the few
target domain samples available for training. In [41],
only the parameters of the batch normalization layers
[20] are fine-tuned to the target domain to minimize the
computational costs needed for the adaptation while also
reducing overfitting effects. The authors of [5] propose to
use gradient-based meta learning [30] and a prototypical
loss [34] to be able to more effectively adapt to target do-
mains with only a few training samples. Another domain
adaptation approach is to simply train a joint embedding
model for both domains but estimate the distributions of
each domain individually [38].

Domain Generalization
Adapting models for each unknown domain with the pos-
sible need of re-training models, fine-tuning hyperparam-
eters or even replacing system components is very im-
practicable since it is computationally costly and may
require expert knowledge. A model that performs well
on the source domain and also generalizes well to unseen
target domains is much more favorable. This is called do-
main generalization [37]. However, since domain general-
ization is literally a generalization of domain adaptation
to arbitrary instead of a specific target domain obtaining
such a well-generalizing model is much more difficult to
achieve.

Datasets
Currently, there are three ASD datasets focusing on do-
main generalization. These are the DCASE2022 [8],
DCASE2023 [9] and DCASE2024 [32] datasets, which are
all based on MIMII DG [10] as well as, respectively, Toy-

ADMOS2 [17], ToyADMOS2+ [18], and ToyADMOS2#
[31]. A part of the DCASE2024 dataset was recorded
with the same setup as IMAD-DS [1]. Compared to
the DCASE2021 dataset related to domain adaptation,
the fundamental difference is that during inference the
domain of individual test samples is unknown. More-
over, the performance for each section is computed jointly
for the source and target domain, i.e. a single decision
threshold needs to be used for both domains. Other
less severe differences are that the size of all test sets
is only half the size of the DCASE2021 test sets and
that there are 10 normal training samples belonging to
the target domain available instead of 3. Otherwise, the
DCASE2021 and DCASE2022 datasets are very similar.
In contrast, the DCASE2023 and DCASE2024 datasets
only consist of a single section for each machine type,
and the development and evaluation sets contain record-
ings of completely different machine types. Furthermore,
the DCASE2024 dataset has noise conditions that are
exclusively used for specific machine types and for some
machine types no additional attribute information are
provided. For more details about the structures of these
datasets, the reader is referred to the corresponding ref-
erences.

Approaches
Domain Specialization

A simple approach to reduce domain mismatch is to bal-
ance the number of training samples belonging to the
source and target domains. This can be achieved by
balancing the domains in each mini-batch [23] or using
more sophisticated approaches [15, 21] such as SMOTE
[4]. However, since this approach trains models for spe-
cific domain shifts and thus requires to re-train the entire
ASD system for each possible domain shift, this can be
referred to as weak domain generalization or domain spe-
cialization. Note that in contrast to domain adaptation,
ASD systems need to work well for all domains without
having knowledge about the domain a given sample be-
longs to. Another way to handle this is to train domain-
specific models and a domain classifier [23]. A closely re-
lated variant is to minimize the difference between data
of different domains. The authors of [29] propose DG-
mix, an extension of variance-invariance-covariance reg-
ularization (VICreg) [2] for self-supervised pre-training,
using a loss term that minimizes the difference between
domains and virtual domains created by mixup [43] be-
fore fine-tuning the model.

Domain-Invariant Representation Learning

Domain-invariant representation learning [3] or a
domain-mixing-based approach [8] reduces the variance
between multiple source domains based on the assump-
tion that this also reduces the variance to an arbitrary
target domain. In [7], individual samples of a batch are
normalized independently of each other to avoid overem-
phasizing the source domain due to the highly imbal-
anced number of samples. The authors of [29] use a loss
term that minimizes the difference between domains and
virtual domains created by mixup [43] before fine-tuning
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the model. Similarly, [42] aims to reduce the difference
between second-order statistics of source domain features
and target domain features. To this end, the authors ap-
plied augmentations such as pitch shifting, time shifting,
time stretching, adding white noise, and Filteraugment
[28] to target domain samples to create more diverse do-
main shifts for training.

Feature Disentanglement

The main idea of feature disentanglement [44] is to
decompose the data into domain-related and domain-
unrelated features, the latter are independent of the do-
main and thus also generalize well to unseen domains.
In most works on ASD, this is achieved by focusing
on the attribute information provided. The authors of
[36] use two discriminative tasks for the sections and at-
tributes and in [11] attribute information are disentan-
gled in a normalizing flow-based ASD model. In [24],
a combination of a hierarchical metadata structure and
attribute-specific Mahalanobis distances is used to learn
more domain-related features. This approach is extended
by [14] with gradient reversal-based [13] feature disentan-
glement of attribute information and using a focal loss
[25].

Anomaly Score Calculation

Last but not least, domain generalization capabilities can
be improved by modifying the anomaly score computa-
tion. This approach has the advantage that no expensive
re-training of neural networks that serve as the basis of
state-of-the-art ASD systems is needed and thus can be
labeled as strong domain generalization. To this end,
[16] uses an autoencoder and calculates the Mahalanobis
distance between input data and reconstruction using
domain-specific covariance matrices. For discriminative
ASD systems, it was shown that simple nearest neighbor
based anomaly scores lead to better results than estimat-
ing domain-specific distributions [39]. Further improve-
ments can be obtained by normalizing the anomaly scores
to reduce the domain mismatch. Examples are normaliz-
ing the anomaly scores based on local densities of normal
reference samples [40] or by a domain-wise standardiza-
tion of the anomaly score distributions [33].

Conclusion
In this manuscript, recent work on how to handle domain
shifts for ASD tasks was reviewed. To this end, the top-
ics domain adaptation and domain generalization were
discussed by motivating and defining these terms, pre-
senting relevant datasets and collecting different works
related to these topics. For future work, it is planned
to compare all presented techniques in extensive experi-
mental evaluations.
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