
DESIGN CHOICES FOR LEARNING EMBEDDINGS FROM AUXILIARY TASKS FOR
DOMAIN GENERALIZATION IN ANOMALOUS SOUND DETECTION

Kevin Wilkinghoff

Fraunhofer FKIE, Fraunhoferstraße 20, 53343 Wachtberg, Germany
kevin.wilkinghoff@fkie.fraunhofer.de

ABSTRACT

Emitted machine sounds can change drastically due to a
change in settings of machines or varying noise conditions
resulting in false alarms when monitoring machine conditions
with a trained anomalous sound detection (ASD) system. In
this work, a conceptually simple state-of-the-art ASD system
based on embeddings learned through auxiliary tasks gener-
alizing to multiple data domains is presented. In experiments
conducted on the DCASE 2022 ASD dataset, particular de-
sign choices such as preventing trivial projections, combining
multiple input representations and choosing a suitable back-
end are shown to significantly improve the ASD performance.

Index Terms— anomalous sound detection, representa-
tion learning, domain generalization, machine listening

1. INTRODUCTION

Semi-supervised anomalous sound detection (ASD) for ma-
chine condition monitoring is the task of training an ASD sys-
tem to distinguish normal from anomalous machine sounds
using only normal training samples [1, 2]. To avoid the need
to repeatedly collect data and retrain the ASD system in case
acoustic conditions or machine attributes change, domain
generalization (DG) [3] techniques can be applied. For DG,
there are two data domains with somehow different acoustics:
a source domain with many training samples and a target do-
main with only a few training samples. The goal is to obtain
an ASD system that correctly detects anomalies regardless of
whether sounds belong to the source or target domain.

The most popular state-of-the-art approach for ASD is to
train a neural network to extract discriminative embeddings
through auxiliary tasks, also called outlier exposed ASD [4],
using angular margin losses such as ArcFace [5], AdaCos [6]
or sub-cluster AdaCos [7]. Examples of auxiliary tasks are
to discriminate between different machine types or among
other acoustic characteristics such as different machine set-
tings or noise conditions. The assumption is that the informa-
tion needed for correctly classifying the sounds is also suffi-
cient to detect anomalous sounds. In contrast to directly mod-
eling the distribution of the data (inlier modeling), e.g. by
using autoencoders, the model learns to ignore other sound

events and thus to handle noise more effectively whereas a
model trained on a single class cannot tell the difference be-
tween important and irrelevant components of the signal.

The main contributions of this work are the following:
First and foremost, a state-of-the-art ASD system with strong
domain generalization capabilities in machine condition mon-
itoring is presented1. The system is conceptually simple since
its architecture and all hyperparameter settings are the same
for each machine type and no external data resources are used
for training the system. Furthermore, in ablation studies sev-
eral design choices are shown to have a significant impact
on the performance in the source and target domain. These
design choices are 1) preventing trivial projections to hyper-
spheres, 2) combining multiple input feature representations
by jointly training sub-networks and 3) choosing a suitable
backend for generalizing to multiple data domains.

2. SYSTEM DESCRIPTION

An overview of the ASD system is shown in Fig. 1. The
system is an improved version of the one described in [8].

2.1. Frontend

The system uses two different feature representations derived
from raw waveforms of 10 seconds length and a sampling
rate of 16kHz as input. First, magnitude spectrograms with
a Hanning-windowed DFT length of 1024 and a hop size of
512. Second, magnitude spectra of entire signals are used to
have the highest possible frequency resolution for better cap-
turing stationary sounds. To reduce acoustic differences be-
tween source and target domains, sample-wise temporal mean
normalization similar to cepstral mean normalization [9] is
applied to the magnitude spectrograms.

2.2. Neural network architecture

The neural network for extracting the embeddings consists of
two different sub-networks for each input representation. To
capture as much information as possible, the entire network

1An open-source implementation of the proposed system is available at:
https://github.com/wilkinghoff/icassp2023

https://orcid.org/0000-0003-4200-9129
https://github.com/wilkinghoff/icassp2023


neural network: jointly trained to discriminate among
machine ids and different attribute information of all

machine types by minimizing the sub-cluster AdaCos loss

frontend backend

raw waveform
(160000)

compute
magnitude

spectrogram
(311 × 513)

apply tem-
poral mean

normalization
(311 × 513)

compute
magnitude
spectrum
(80000)

extract
embbeding
with neural
network for

spectrograms
(128)

extract
embbeding
with neural

network
for spectra

(128)

concatenate
embeddings

(256)
evaluate cosine
distances with
all samples of
target domain

(10)

evaluate cosine
distances

with means
(k-means) of

source domain
(16)

return min-
imum of

distances as
anomaly score

(1)

Fig. 1. Structure of the proposed anomalous sound detection system. Representation size in each step is given in brackets.

Table 1. Modified ResNet architecture for spectrograms.
layer name structure output size

input BN (temporal axis) 311× 513
2D convolution 7× 7, stride= 2 156× 257× 16

residual block
(
3× 3
3× 3

)
× 2, stride= 1 77× 128× 16

residual block
(
3× 3
3× 3

)
× 2, stride= 1 39× 64× 32

residual block
(
3× 3
3× 3

)
× 2, stride= 1 20× 32× 64

residual block
(
3× 3
3× 3

)
× 2, stride= 1 10× 16× 128

max pooling 10× 1, stride= 1 1× 16× 128
flatten BN 2056
dense (embedding) linear 128

is trained to discriminate between all machine types, sections
and different attribute information about the machines result-
ing in a total of 342 classes by minimizing the sub-cluster
AdaCos loss [7] with 16 sub-clusters for each class. In con-
trast to [10], where multiple networks and loss functions have
been used for different classification tasks, this training strat-
egy is much simpler. The sub-network used for the spectro-
grams is based on a modified ResNet architecture [11] as also
used in [7,8,10] and is described in Tab. 1. For the spectra, the
sub-network consists of three one-dimensional convolutions
and five dense layers as shown in Tab. 2. Note that improving
the results for the auxiliary task does not necessarily imply
a better ASD performance and thus adjusting the number of
layers and their parameter size is not critical for improving the
ASD capabilities. However, both sub-network architectures
are carefully designed to avoid learning trivial mappings to
hyperspheres for specific classes as done in networks for deep
one-class classification [12]. This means that 1) no bounded
non-linearities, 2) no bias terms and 3) no trainable hyper-
sphere centers are used. Instead, for 1) we only use rectified
linear units as non-linearities and for 3) we randomly initial-
ize the cluster centers of the sub-cluster AdaCos loss without
adapting them during training. A random initialization of the
cluster centers is not a problem, since embeddings and cluster
centers live in a relatively high-dimensional space and thus
are very likely to be pairwise orthogonal.

The output of both sub-networks, which can both be in-
terpreted as embeddings by themselves, are concatenated to
obtain a single embedding for each file. This concatenation

Table 2. Network architecture for spectra.
layer name structure output size

input - 80000
1D convolution 256, stride= 64 1250× 128
1D convolution 64, stride= 16 40× 128
1D convolution 16, stride= 4 10× 128
flatten - 1280
dense BN, ReLU 128
dense BN, ReLU 128
dense BN, ReLU 128
dense BN, ReLU 128
dense (embedding) linear 128

ensures that both networks capture all information needed to
discriminate between the classes present in their respective
feature representations. Therefore, the embeddings are more
sensitive to anomalous sounds than when giving the network
the freedom to utilize only a single feature representation (e.g.
by taking the sum) because specific anomalies may be appar-
ent in only one of the two input representations.

The entire network is implemented using Tensorflow [13]
and is trained for 10 epochs with a batch size of 64 using
Adam [14]. For data augmentation, only mixup [15] with a
uniformly distributed mixing coefficient is used.

2.3. Backend

To obtain an anomaly score for a test sample, for each do-
main a different strategy is applied. For the source domain,
k-means with 16 clusters is applied to the embeddings ob-
tained with all source samples and the cosine distance be-
tween the test embedding and all these means is calculated.
For the target domain, the cosine distance between the test
embedding and the embeddings of all target samples is calcu-
lated. Finally, the minimum over all distances is returned as
an anomaly score with higher scores indicating anomalies.

3. EXPERIMENTAL SETUP

For all experiments, the DCASE 2022 ASD dataset [2] was
used. This dataset consists of sounds from the machine types
“bearing”, “fan”, “gearbox”, “slider”, “valve” from MIMII
DG [16], and “ToyCar”, “ToyTrain” from ToyADMOS2 [17].
For each machine type, there are 6 different subsets of the



Table 3. Comparison between using or not using trainable
cluster centers and bias terms.

trainable cluster centers non-trainable cluster centers
dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%)

using bias terms

dev source 81.65± 0.85 70.25± 1.31 82.75± 0.95 75.22± 0.78
dev target 77.18± 0.88 62.05± 1.10 76.84± 1.39 61.66± 1.09
dev mixed 77.73± 0.90 64.09± 1.40 79.79± 0.50 64.89± 0.41

eval source 74.21± 1.14 62.84± 1.38 76.45± 0.71 65.12± 0.66
eval target 71.13± 1.24 59.54± 0.86 69.19± 0.56 59.08± 1.15
eval mixed 71.91± 0.98 58.84± 0.88 73.04± 0.58 59.18± 0.90

not using bias terms

dev source 82.88± 0.68 71.44± 0.96 84.19± 0.7584.19± 0.7584.19± 0.75 76.45± 0.9076.45± 0.9076.45± 0.90
dev target 77.68± 1.11 62.82± 1.1762.82± 1.1762.82± 1.17 78.51± 0.9078.51± 0.9078.51± 0.90 62.54± 0.87
dev mixed 78.15± 0.77 64.86± 0.52 81.36± 0.6681.36± 0.6681.36± 0.66 66.55± 0.8666.55± 0.8666.55± 0.86

eval source 74.34± 0.96 63.49± 0.38 76.81± 0.7976.81± 0.7976.81± 0.79 65.84± 0.2265.84± 0.2265.84± 0.22
eval target 71.30± 0.3371.30± 0.3371.30± 0.33 59.94± 0.8159.94± 0.8159.94± 0.81 69.80± 0.53 59.67± 1.14
eval mixed 72.15± 0.50 58.90± 0.42 73.43± 0.5473.43± 0.5473.43± 0.54 59.78± 0.8359.78± 0.8359.78± 0.83

dataset called sections, of which three belong to a develop-
ment set and the other three belong to an evaluation set, cor-
responding to different types of domain shifts. For each sec-
tion, there are 990 normal training samples belonging to the
source domain, 10 normal training samples belonging to a tar-
get domain and 200 test samples each belonging to one of the
domains. Furthermore, some attribute information defining
states of the machines or different types of noise are given for
training samples. All recordings include real factory noise,
have a length of 10 seconds and a sampling rate of 16 kHz.
For training the network, all machine types, sections and dif-
ferent attribute information about the machines belonging to
the development and evaluation set (in each case both do-
mains) are used as classes for the auxiliary task.

In each experiment, each system was trained five times
and the arithmetic mean and standard deviation of the har-
monic means of all AUCs and pAUCs obtained for all 42 ma-
chine ids are shown. Highest AUCs and pAUCs for each com-
bination of dataset and domain are highlighted in bold letters.

4. EXPERIMENTAL RESULTS

4.1. Preventing trivial projections to hyperspheres

In Tab. 3, the performance obtained with trainable and non-
trainable class centers, and when using or not using bias terms
are compared. Although non-trainable class centers decrease
the performance on the target domain, not using bias terms or
trainable class centers improves the overall performance.

4.2. Input feature representations

Next, different input feature representations and their com-
binations are compared. The results are shown in Tab. 4
and show that magnitude spectrograms perform better than
magnitude spectra and log-mel magnitude spectrograms with
128 mel bins. When combining a spectrogram with the full
spectrum, the performance is even better since the model also
has access to the whole frequency resolution instead of only
a time-frequency representation. Moreover, the best way to

Table 4. Comparison between different input feature repre-
sentations and ways of combining them.

individual input feature representations
magnitude spectrum log-mel magnitude spectrogram magnitude spectrogram

dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%) AUC (%) pAUC (%)

dev source 80.75± 0.92 71.09± 1.14 70.91± 2.10 63.21± 1.10 79.18± 1.07 70.38± 0.43
dev target 73.95± 1.25 61.31± 1.40 65.78± 1.48 57.05± 0.76 76.59± 1.59 60.59± 1.50
dev mixed 76.81± 0.94 63.09± 1.23 68.93± 1.52 57.79± 0.55 77.60± 1.02 62.31± 1.10

eval source 68.42± 1.02 59.06± 0.89 67.59± 1.01 59.96± 0.65 74.65± 0.83 64.04± 1.23
eval target 63.46± 1.39 56.90± 0.95 62.09± 0.61 56.60± 0.79 69.67± 1.14 58.95± 0.74
eval mixed 66.00± 1.11 57.11± 0.58 65.04± 0.68 57.00± 0.50 72.10± 0.81 58.87± 0.33

combining magnitude spectrum and magnitude spectrograms
concatenate embeddings add embeddings concatenate embeddings

after training while training while training
dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%) AUC (%) pAUC (%)

dev source 84.68± 0.8684.68± 0.8684.68± 0.86 74.51± 0.26 83.12± 1.18 73.25± 1.11 84.19± 0.75 76.45± 0.9076.45± 0.9076.45± 0.90
dev target 78.78± 0.7878.78± 0.7878.78± 0.78 63.00± 0.3663.00± 0.3663.00± 0.36 77.96± 1.37 62.02± 1.11 78.51± 0.90 62.54± 0.87
dev mixed 81.17± 0.66 65.23± 0.39 80.21± 0.73 64.40± 1.20 81.36± 0.6681.36± 0.6681.36± 0.66 66.55± 0.8666.55± 0.8666.55± 0.86

eval source 75.27± 0.96 63.93± 0.63 75.54± 0.83 64.85± 0.73 76.81± 0.7976.81± 0.7976.81± 0.79 65.84± 0.2265.84± 0.2265.84± 0.22
eval target 69.31± 0.90 59.45± 0.67 69.71± 0.39 59.08± 1.15 69.80± 0.5369.80± 0.5369.80± 0.53 59.67± 1.1459.67± 1.1459.67± 1.14
eval mixed 72.18± 0.67 59.45± 0.46 72.48± 0.53 59.22± 0.66 73.43± 0.5473.43± 0.5473.43± 0.54 59.78± 0.8359.78± 0.8359.78± 0.83

Table 5. Effect of temporal normalization.
without temporal normalization with temporal normalization

dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%)

magnitude spectrogram

dev source 79.93± 0.71 70.98± 1.38 79.18± 1.07 70.38± 0.43
dev target 76.18± 0.85 60.35± 1.23 76.59± 1.59 60.59± 1.50
dev mixed 77.69± 0.47 62.52± 1.09 77.60± 1.02 62.31± 1.10

eval source 75.53± 1.19 64.31± 1.08 74.65± 0.83 64.04± 1.23
eval target 69.52± 0.73 59.67± 0.7159.67± 0.7159.67± 0.71 69.67± 1.14 58.95± 0.74
eval mixed 72.19± 0.77 59.39± 0.91 72.10± 0.81 58.87± 0.33

magnitude spectrum + magnitude spectrogram

dev source 83.18± 1.68 74.66± 0.71 84.19± 0.7584.19± 0.7584.19± 0.75 76.45± 0.9076.45± 0.9076.45± 0.90
dev target 76.95± 0.97 62.26± 0.62 78.51± 0.9078.51± 0.9078.51± 0.90 62.54± 0.8762.54± 0.8762.54± 0.87
dev mixed 80.04± 0.76 64.84± 0.51 81.36± 0.6681.36± 0.6681.36± 0.66 66.55± 0.8666.55± 0.8666.55± 0.86

eval source 76.41± 0.48 65.39± 0.68 76.81± 0.7976.81± 0.7976.81± 0.79 65.84± 0.2265.84± 0.2265.84± 0.22
eval target 68.89± 0.96 59.46± 0.68 69.80± 0.5369.80± 0.5369.80± 0.53 59.67± 1.1459.67± 1.1459.67± 1.14
eval mixed 72.85± 0.61 59.91± 0.7559.91± 0.7559.91± 0.75 73.43± 0.5473.43± 0.5473.43± 0.54 59.78± 0.83

combine these representations is by concatenating the corre-
sponding embeddings while training.

In Tab. 5, the effect of using temporal normalization for
the magnitude spectrograms is investigated. It can be seen
that temporal normalization improves the performance on the
target domain as intended while slightly but not significantly
degrading the performance on the source domain when using
only magnitude spectrograms. But when combining spectra
and spectrograms, temporal normalization also improves the
performance on the source domain. The reason is that both
input representations complement each other more effectively
because stationary frequency information are removed from
the spectrograms but are clearly contained in the spectra.

4.3. Backends

In Tab. 6, different backends, namely cosine distance and a
GMM with 16 Gaussian components and a full covariance
matrix regularized by adding 10−3 to the diagonal (for more
details, see [8]), are compared. The following observations
can be made: As expected, specialized models for individual
domains perform better on the domain they are trained on and
much worse on the other domain. For the source domain,
the GMM model has a slightly higher performance than the
cosine similarity, which is consistent with the findings in [7].
For the target domain, both backends are equivalent.



Table 6. Comparison between different backends.
Gaussian mixture model (GMM) cosine distance

dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%)

using scores from source domain model only

dev source 82.97± 0.97 77.36± 0.38 83.10± 1.02 76.87± 0.26
dev target 66.52± 0.42 59.63± 0.70 71.66± 1.25 61.45± 0.83
dev mixed 71.48± 0.26 58.86± 0.38 76.72± 0.78 63.37± 0.71

eval source 77.46± 1.16 66.73± 0.56 76.68± 0.85 66.25± 0.51
eval target 44.23± 3.67 54.87± 0.46 57.90± 1.17 55.62± 1.24
eval mixed 63.83± 0.62 55.74± 0.33 67.24± 0.70 56.83± 0.92

using scores from target domain model only

dev source 62.41± 2.80 60.54± 1.44 62.42± 2.80 60.55± 1.44
dev target 79.93± 0.9279.93± 0.9279.93± 0.92 62.19± 1.05 79.92± 0.9279.92± 0.9279.92± 0.92 62.18± 1.06
dev mixed 70.84± 1.13 58.36± 1.38 70.84± 1.13 58.36± 1.38

eval source 52.82± 3.40 56.27± 1.17 52.80± 3.41 52.26± 1.17
eval target 71.15± 0.5071.15± 0.5071.15± 0.50 60.72± 0.9560.72± 0.9560.72± 0.95 71.15± 0.5071.15± 0.5071.15± 0.50 60.72± 0.9560.72± 0.9560.72± 0.95
eval mixed 62.55± 0.79 54.66± 0.92 62.55± 0.79 54.65± 0.92

using sum of scores from both domain models

dev source 75.94± 2.70 70.34± 2.69 79.44± 1.95 73.29± 2.60
dev target 78.64± 1.12 63.28± 0.94 78.84± 1.23 62.67± 0.98
dev mixed 77.10± 1.59 65.12± 1.63 77.83± 1.56 66.11± 1.61

eval source 64.57± 1.35 60.96± 1.21 68.96± 1.11 63.09± 0.87
eval target 66.69± 0.54 58.73± 0.97 67.84± 0.48 58.80± 1.33
eval mixed 65.70± 0.91 57.26± 0.77 67.98± 0.64 58.12± 0.71

using scores from joint model for both domains

dev source 84.57± 0.7084.57± 0.7084.57± 0.70 77.57± 0.4177.57± 0.4177.57± 0.41 84.19± 0.75 76.45± 0.90
dev target 77.26± 1.02 63.12± 1.2463.12± 1.2463.12± 1.24 78.51± 0.90 62.54± 0.87
dev mixed 80.06± 0.35 64.67± 0.70 81.36± 0.6681.36± 0.6681.36± 0.66 66.55± 0.8666.55± 0.8666.55± 0.86

eval source 78.15± 0.9578.15± 0.9578.15± 0.95 67.55± 0.6367.55± 0.6367.55± 0.63 76.81± 0.79 65.84± 0.22
eval target 65.17± 0.48 58.59± 0.79 69.80± 0.53 59.67± 1.14
eval mixed 71.35± 0.53 59.32± 0.83 73.43± 0.5473.43± 0.5473.43± 0.54 59.78± 0.8359.78± 0.8359.78± 0.83

Table 7. Effect of the presented design choices.
standard design choices presented design choices

dataset domain AUC (%) pAUC (%) AUC (%) pAUC (%)

dev source 71.65± 1.07 62.71± 0.74 84.19± 0.7584.19± 0.7584.19± 0.75 76.45± 0.9076.45± 0.9076.45± 0.90
dev target 63.63± 1.11 55.28± 0.84 78.51± 0.9078.51± 0.9078.51± 0.90 62.54± 0.8762.54± 0.8762.54± 0.87
dev mixed 67.72± 0.79 55.94± 0.54 81.36± 0.6681.36± 0.6681.36± 0.66 66.55± 0.8666.55± 0.8666.55± 0.86

eval source 69.11± 1.05 58.46± 0.42 76.81± 0.7976.81± 0.7976.81± 0.79 65.84± 0.2265.84± 0.2265.84± 0.22
eval target 61.33± 0.70 54.82± 0.78 69.80± 0.5369.80± 0.5369.80± 0.53 59.67± 1.1459.67± 1.1459.67± 1.14
eval mixed 64.59± 0.74 55.22± 0.66 73.43± 0.5473.43± 0.5473.43± 0.54 59.78± 0.8359.78± 0.8359.78± 0.83

For domain generalization, it is necessary to use a single
decision threshold for both domains and thus a single ASD
score is required. It can be seen that training a joint model
has a significantly higher performance than adding the ASD
scores of individually trained models. However, for the target
domain the joint model is worse than a specialized model. For
the source domain, the joint GMM model has a better perfor-
mance than using cosine distance again and interestingly even
outperforms the specialized model. But when jointly evaluat-
ing both domains, using the cosine distance as a backend has
a higher performance than using a GMM. The most proba-
bly reason is that in contrast to a GMM the cosine distance
requires no training and thus the resulting ASD scores are
scaled more consistently among both domains.

4.4. Putting it all together

To show the strong impact of the design choices on the ASD
performance, we compared a system with standard design
choices to the presented ones. The standard design choices
are using log-mel magnitude spectrograms, trainable cluster
centers, bias terms, and GMMs as backend and are for exam-
ple used in the ASD system [10] ranked third in the DCASE
challenge 2021. The results are shown in Tab. 7. It can be

50

60

70

80

70
.9

74
6%

68
.2

23
1%

68
.0

37
3%

67
.9

79
2%

67
.6

23
6%

67
.5

65
3%

67
.1

22
4%

66
.8

25
1%

63
.9

48
6%

63
.8

31
3%

63
.7

24
4%

54
.0

17
2%

of
fic

ia
ls

co
re

in
pe

rc
en

t

rank 1 [18]
rank 2 [19]
rank 3 [20]
our system
rank 4 [21]
rank 5 [22]
rank 6 [23]
rank 7 [24]
rank 8 [25]
rank 9 [26]
rank 10 [8]
baseline [2]

Fig. 2. Comparison between presented, baseline and 10 top-
performing systems of the DCASE challenge 2022.

seen that the presented design choices led to a significant per-
formance improvement for all domains and dataset splits.

4.5. Comparison to other systems

Last, we compared the performance of our system (see Fig. 1)
to the baseline and 10 top-performing systems of the DCASE
challenge 2022. For these experiments, we trained the pre-
sented system five times and created an ensemble by adding
the corresponding anomaly scores. The results can be found
in Fig. 2. Our system would have obtained rank 4, perform-
ing close to the rank 3 system [20], and thus can be considered
state-of-the-art. Note that the rank 1 system [18] used manu-
ally customized band-pass filters for each machine type with-
out stating the details in the report and monitored the AUC
score on the development set while training to find the best
performing model parameters and thus also indirectly used
anomalous samples for training. Both do not allow a fair com-
parison between performances and are a possible explanation
for the large performance gap to all other systems.

5. CONCLUSIONS

In this work a conceptually simple ASD system based on
learning embeddings through auxiliary tasks for domain gen-
eralization was presented. In various experiments conducted
on the DCASE 2022 ASD dataset, it was shown that several
design choices, namely preventing trivial projections, utiliz-
ing multiple input feature representations and choosing a suit-
able backend, significantly improve the performance and that
the presented system achieves state-of-the-art performance.
For future work, it is planned to carry out additional exper-
iments to verify whether the presented design choices also
improve the performances when using other ASD systems.

6. REFERENCES

[1] Yohei Kawaguchi et al., “Description and discussion on
DCASE 2021 challenge task 2: Unsupervised anoma-
lous detection for machine condition monitoring under
domain shifted conditions,” in DCASE, 2021, pp. 186–
190.



[2] Kota Dohi et al., “Description and discussion on
DCASE 2022 challenge task 2: Unsupervised anoma-
lous sound detection for machine condition monitoring
applying domain generalization techniques,” in DCASE.
2022, pp. 26–30, Tampere University.

[3] Jindong Wang, Cuiling Lan, Chang Liu, Yidong
Ouyang, and Tao Qin, “Generalizing to unseen do-
mains: A survey on domain generalization,” in IJCAI.
2021, pp. 4627–4635, ijcai.org.

[4] Dan Hendrycks, Mantas Mazeika, and Thomas G. Diet-
terich, “Deep anomaly detection with outlier exposure,”
in ICLR. 2019, OpenReview.net.

[5] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
Zafeiriou, “ArcFace: Additive angular margin loss for
deep face recognition,” in CVPR. 2019, pp. 4690–4699,
IEEE.

[6] Xiao Zhang, Rui Zhao, Yu Qiao, Xiaogang Wang, and
Hongsheng Li, “AdaCos: Adaptively scaling cosine log-
its for effectively learning deep face representations,” in
CVPR. 2019, pp. 10823–10832, IEEE.

[7] Kevin Wilkinghoff, “Sub-cluster AdaCos: Learning
representations for anomalous sound detection,” in
IJCNN. 2021, IEEE.

[8] Kevin Wilkinghoff, “An outlier exposed anomalous
sound detection system for domain generalization in
machine condition monitoring,” Tech. Rep., DCASE
Challenge, 2022.

[9] Aaron E. Rosenberg, Chin-Hui Lee, and Frank K.
Soong, “Cepstral channel normalization techniques for
HMM-based speaker verification,” in ICSLP. 1994,
ISCA.

[10] Kevin Wilkinghoff, “Combining multiple distributions
based on sub-cluster AdaCos for anomalous sound de-
tection under domain shifted conditions,” in DCASE,
2021, pp. 55–59.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
CVPR. 2016, pp. 770–778, IEEE.

[12] Lukas Ruff et al., “Deep one-class classification,” in
ICML. 2018, vol. 80, pp. 4390–4399, PMLR.

[13] Martı́n Abadi et al., “Tensorflow: A system for large-
scale machine learning,” in OSDI, 2016, pp. 265–283.

[14] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” in ICLR, 2015.

[15] Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and
David Lopez-Paz, “Mixup: Beyond empirical risk min-
imization,” in ICLR, 2018.

[16] Kota Dohi et al., “MIMII DG: Sound dataset for mal-
functioning industrial machine investigation and inspec-
tion for domain generalization task,” in DCASE. 2022,
pp. 31–35, Tampere University.

[17] Noboru Harada, Daisuke Niizumi, Daiki Takeuchi, Ya-
sunori Ohishi, Masahiro Yasuda, and Shoichiro Saito,
“ToyADMOS2: Another dataset of miniature-machine
operating sounds for anomalous sound detection under
domain shift conditions,” in DCASE, 2021, pp. 1–5.

[18] Ying Zeng, Hongqing Liu, Lihua Xu, Yi Zhou, and
Lu Gan, “Robust anomaly sound detection framework
for machine condition monitoring,” Tech. Rep., DCASE
Challenge, 2022.

[19] Ibuki Kuroyanagi, Tomoki Hayashi, Kazuya Takeda,
and Tomoki Toda, “Two-stage anomalous sound de-
tection systems using domain generalization and spe-
cialization techniques,” Tech. Rep., DCASE Challenge,
2022.

[20] Feiyang Xiao et al., “The dcase2022 challenge
task 2 system: Anomalous sound detection with self-
supervised attribute classification and gmm-based clus-
tering,” Tech. Rep., DCASE Challenge, 2022.

[21] Yufeng Deng, Jia Liu, and Wei-Qiang Zhang, “Aithu
system for unsupervised anomalous detection of ma-
chine working status via sounding,” Tech. Rep., DCASE
Challenge, 2022.

[22] Satvik Venkatesh, Gordon Wichern, Aswin Subrama-
nian, and Jonathan Le Roux, “Disentangled surrogate
task learning for improved domain generalization in un-
supervised anomalous sound detection,” Tech. Rep.,
DCASE Challenge, 2022.

[23] Yuming Wei, Jian Guan, Haiyan Lan, and Wenwu
Wang, “Anomalous sound detection system with self-
challenge and metric evaluation for dcase2022 chal-
lenge task 2,” Tech. Rep., DCASE Challenge, 2022.

[24] Kazuki Morita, Tomohiko Yano, and Khai Tran, “Com-
parative experiments on spectrogram representation for
anomalous sound detection,” Tech. Rep., DCASE Chal-
lenge, 2022.

[25] Jisheng Bai, Yafei Jia, and Siwei Huang, “Jless submis-
sion to dcase2022 task2: Batch mixing strategy based
method with anomaly detector for anomalous sound de-
tection,” Tech. Rep., DCASE Challenge, 2022.

[26] Sergey Verbitskiy, Milana Shkhanukova, and Viacheslav
Vyshegorodtsev, “Unsupervised anomalous sound de-
tection using multiple time-frequency representations,”
Tech. Rep., DCASE Challenge, 2022.


	 Introduction
	 System description
	 Frontend
	 Neural network architecture
	 Backend

	 Experimental Setup
	 Experimental results
	 Preventing trivial projections to hyperspheres
	 Input feature representations
	 Backends
	 Putting it all together
	 Comparison to other systems

	 Conclusions
	 References

