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Abstract—When training a model for anomalous sound detec-
tion, one usually needs to estimate the underlying distribution
of the normal data. By doing so, anomalous data has a lower
probability in view of this distribution than normal data and
thus can easily be detected. However, audio data is very high-
dimensional making it difficult to have a good estimate of the
true distribution. To have more accurate estimates, the dimension
of the data can be reduced first. One way to do this is to train
discriminative neural networks for extracting lower-dimensional
representations of the data. Particularly, neural networks trained
with angular margin losses as AdaCos have been shown to
perform well for this task. In this work, a modified AdaCos
loss called sub-cluster AdaCos specifically designed for detecting
anomalous data is presented. In multiple experiments conducted
on the DCASE 2020 dataset for “Unsupervised Detection of
Anomalous Sounds for Machine Condition Monitoring”, these
design choices are empirically justified. As a result, a conceptually
simple system for anomalous sound detection is presented that
significantly outperforms all other published systems on this
dataset.

Index Terms—machine listening, anomaly detection, represen-
tation learning, angular margin loss

I. INTRODUCTION

Anomalous sound detection has various applications such
as detecting traffic accidents in road surveillance systems
[1], [2], detecting terrorist attacks in subway stations [3]
or machine condition monitoring [4]. Furthermore, all open-
set classification problems include anomaly detection as a
subtask since not all classes are known a priori when training
the system. Hence, anomalous sound detection is of special
interest for many machine listening applications. One can
distinguish three major branches of anomaly detection: super-
vised, semi-supervised and unsupervised [5]. For supervised
anomaly detection, two labeled datasets consisting of normal
data and anomalous data are used. Although the space of
anomalies is huge because it consists of everything that
is not considered normal and thus can never be captured
exhaustively, samples of anomalies can simplify the training
process. This is especially true, when all expected anomalies
sound roughly alike as for example when detecting accidents
with traffic surveillance systems. In contrast to unsupervised
anomaly detection where the training dataset can also include
anomalous data and it is not known whether a data sample
is normal or not, semi-supervised anomaly detection consists
of a clean training dataset containing only normal data. Note
that in most practical applications it is much easier to collect

normal data than anomalous data. The main reasons are that
anomalous events occur only rarely and can sound much more
diverse than recordings of the normal condition. Using the
traffic example again, large amounts of audio data belonging
to regular road traffic can be collected much easier than
recordings of accidents i.e. anomalous data. When considering
terrorist attacks, this is even more evident. Therefore, not
needing anomalous data for training a system is more suitable
for realistic applications and thus a semi-supervised setting is
considered in this work.

Usually, semi-supervised or unsupervised anomaly detection
boils down to estimating the true underlying distribution of the
known data without the aid of sample outliers. Afterwards, one
can utilize this distribution to compute the log-probability of
the test data or an approximation of it and decide whether
this data is an inlier or an outlier using a threshold. However,
raw data e.g. waveforms is mostly very high-dimensional
making it challenging to estimate the corresponding distribu-
tion with limited training data resources. To circumvent this
problem, one can train a model for extracting suitable, lower-
dimensional representations of the data, which capture enough
information such that representations belonging to outliers
strongly deviate from inliers. One way to train such a model
is to discriminate among all known classes in a supervised
manner and utilize the output of an intermediate layer as a
feature extractor for a lower-dimensional representation of the
data. The assumption is that in order to be able to discriminate
among the known classes, all representations need to capture
enough information of the raw data and this information is
also sufficient to detect outliers. In particular, angular margin
losses such as ArcFace [6] and AdaCos [7] have been shown
to work well for this task. The reason is that they enforce
a low intra-class variability and a high inter-class variability
by minimizing the cosine angle of a known class to a learned
mean value and ensuring a margin for angles between different
classes.

The aim of this work is to investigate specific design
choices for an anomalous sound detection system based on
an angular margin loss function. The contributions are the
following: First, several changes for the AdaCos loss function
are proposed leading to a novel loss function called sub-cluster
AdaCos. The proposed changes are 1) taking into account
the use of mixup to augment the samples, 2) utilizing sub-
clusters to learn a less restrictive distribution than standard



AdaCos and 3) using Gaussian distributions or more generally
Gaussian mixture models (GMMs) as a backend. In various
experiments, it is shown that all of these changes lead to signif-
icant improvements in performance when detecting anomalous
sounds. As a result, a conceptually simple anomalous sound
detection system is presented that significantly outperforms
all other published systems on the DCASE 2020 dataset for
“Unsupervised Detection of Anomalous Sounds for Machine
Condition Monitoring” [4].

II. RELATED WORK

Recent work on machine listening is heavily promoted
through the annual “Detection and Classification of Acoustic
Scenes and Events (DCASE) Workshop” and the associated
challenges. Anomalous sound detection is not an exception.
Of particular interest for this work is task 2 “Unsupervised
Detection of Anomalous Sounds for Machine Condition Mon-
itoring” [4] of DCASE 2020. The baseline system of this
task consists of class-dependent autoencoders for encoding
and decoding consecutive frames of log-Mel spectrograms and
utilizing the reconstruction error as an anomaly score. The
underlying assumption is that normal data, which has also
been used for training the autoencoders, can be reconstructed
much better than anomalous data. This fundamental approach
of using autoencoders for detecting anomalous data has been
extended by utilizing autoencoders conditioned on the machine
ids i.e. the class labels [8], [9]. The main idea is that a single
autoencoder is used instead of a separate one for each class
and trained to have a low reconstruction error when being
conditioned on the correct class and a high reconstruction error
when being conditioned on another class.

A completely different approach is to train a neural network
to discriminate among all known classes. By essentially treat-
ing the other classes as anomalous data, decision boundaries
are learned for the normal data of each class. Several systems
following this approach have been developed independently
in the DCASE challenge 2020, most of which use neural
networks with a suitable loss function that also reduces intra-
class variability to extract lower-dimensional representations
of the data. Inoue et al. [10] use center loss [11], Lopez
et al. [12] an additive margin softmax layer [13] and Giri
et al. [14] as well as Zhou [15] use ArcFace [6] for this
purpose. After training such a discriminative network, these
lower dimensional representations are utilized in different
ways to obtain anomaly detection scores. In most cases, the
direct output of the trained representation model or the cosine
similarity are used. Another method is to train an additional
backend model as for example probabilistic linear discriminant
analysis (PLDA) [16] as done in [17].

III. METHODOLOGY

The purpose of this section is to first give a short review on
angular margin losses, particularly AdaCos, and then propose
a modified AdaCos loss that results in significantly better
anomalous sound detection performance.

A. Standard AdaCos loss function

For many years the softmax function in combination with
the categorical crossentropy as a loss function has been the
standard output layer for classification tasks solved by neural
networks. To avoid any confusion, within this work the term
“class” corresponds to one of the known classes for which
normal training data is available. This means that each ma-
chine id is treated as another class. But when training a neu-
ral network for the purpose of extracting lower-dimensional
representations of the data, so-called embeddings, the softmax
function only leads to representations that are linearly sep-
arable without explicitly reducing intra-class and increasing
inter-class distance of samples. To address this issue, losses
based on the Euclidean distance as for example triplet loss [18]
and center loss [11] were proposed. Triplet loss uses an anchor
input whose distance to a positive and a negative input sample
belonging to the same and to another class is minimized
and maximized, respectively. Center loss avoids constructing
these triplets as input by minimizing the distance to learned
center vectors for each class. Recently, angular margin loss
functions such as ArcFace [6] have been shown to have better
generalization capabilities than losses based on the Euclidean
distance by enforcing a margin between angles of samples
belonging to different classes. However, the performance in
a particular task obtained with angular margin losses heavily
relies on fine-tuning their hyperparameters, namely the scale
parameter s and the angular margin parameter m. Therefore,
AdaCos [7], which uses an adaptive scale parameter and
does not depend on any manually set hyperparameters, was
developed. Since both losses, ArcFace and AdaCos, lead to
similar performance and tuning additional parameters is time
consuming, this work focuses entirely on AdaCos.

Let us now formally introduce AdaCos. For AdaCos, the
probability of sample xi ∈ RD belonging to class j of the
C ∈ N classes is given by

Pi,j ∶=
exp(s̃ ⋅ cos θi,j)

∑Ck=1 exp(s̃ ⋅ cos θi,k)
(1)

where θi,j ∈ [0, π] is defined through the cosine similarity
cos θi,j = ⟨xi,Wj⟩/∥xi∥∥Wj∥ for a learned class center Wj ∈
RD. The dynamically adaptive scale parameter s̃(t) at training
step t ∈ N0 is defined as

s̃(t) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2 ⋅ log(C − 1) if t = 0

logB(t)avg

cos(min(π4 ,θ
(t)
med))

else (2)

where θ
(t)
med ∈ [0, π] denotes the median of all angles θi,yi

belonging to a mini-batch of size N ∈ N with yi being the
class of xi and

B(t)avg ∶=
1

N
∑

i∈N (t)

C

∑
k=1
k≠yi

exp (s̃(t−1) ⋅ cos θi,k) (3)

with N (t) denoting all indices of the samples belonging to the
mini-batch of size N ∈ N.



B. Sub-Cluster AdaCos loss function

The data augmentation technique “mixup” [19] is known
to significantly improve the classification performance, since
overfitting of a model to specific training data is prohibited.
This is done by linearly interpolating between two samples
xi, xj ∈ RD contained in a mini-batch and their corresponding
one-hot encoded class labels ȳi, ȳj ∈ [0,1]C

xmixed ∶= λxi + (1 − λ)xj
ȳmixed ∶= λȳi + (1 − λ)ȳj

(4)

where the mixing coefficient λ ∈ [0,1] is drawn at random
from a suitable distribution. But if one uses mixup, standard
AdaCos is not well-defined since most mixed-up samples do
not belong to a single class but multiple ones and thus do not
have a well-defined class mean. Even when both mixed-up
samples belong to the same class and thus have a well-defined
class mean, these samples can be treated as anomalies when
updating the AdaCos parameters to have a sharper boundary
around the support of the distribution of the normal, non-mixed
samples of this particular class. To incorporate these changes
into the AdaCos function, only mixed-up samples are used
for training with mixing coefficients drawn from the uniform
distribution. Furthermore, θ̂(t)med is the median of the mixed-up
angles and B̂(t)avg is computed using all angles present in a mini-
batch, not only the angles of the non-corresponding classes.
The details will follow below.

When using AdaCos, only a single cluster is formed for each
class and this enforces a single Gaussian distribution for the
learned representations after projecting them to the unit sphere
by normalizing their lengths. However, anomalous data is eas-
ier to detect when a more general, less restrictive distribution is
learned for the representations. Gaussian mixture models can
approximate any given smooth probability density function.
Therefore, a canonical choice to relax the restriction on the
distribution imposed by the AdaCos loss is to allow multiple
sub-clusters. The same idea of automatically finding subclasses
is also used in subclass discriminant analysis and has been
shown to outperform other discriminant analysis approaches
without subclasses [20], [21]. Note that Deng et al. proposed a
very similar approach for the ArcFace loss, namely sub-center
ArcFace that uses multiple learned sub-centers for each class
instead of only one to efficiently handle label noise present in
the training data [22]. This is done by first training the model
and then dropping all samples belonging to small sub-clusters,
so called non-dominant sub-centers. However, there is a subtle
but important difference between sub-center ArcFace and sub-
cluster AdaCos. For sub-center ArcFace, only the closest sub-
center is considered by taking the maximum cosine similarity.
Here, all softmax scores of all sub-clusters of any given class
are later summed up to encourage the usage of multiple sub-
clusters and thus modeling a more complex distribution.

To avoid numerical issues of large arguments inside the
exponential function, which frequently arose in the conducted
experiments due to the changes from above, a re-scaling trick
that is also used in many implementations of the softmax

function is applied. More concretely, the maximum value of
the logits is determined

f (t)max ∶= max
i∈N (t)

CS
max
j=1

(s̃(t−1) ⋅ cos θi,j) (5)

where S ∈ N denotes the number of sub-clusters and inserted
appropriately into the formulas for B̂(t)avg and ŝ(t).

Using the same notation as before, Sub-Cluster AdaCos with
all proposed changes is now defined as follows. The modified
adaptive scale parameter ŝ(t) is defined as

ŝ(t) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
2 ⋅ log(CS − 1) if t = 0
f(t)max+log B̂

(t)
avg

cos(min(π4 ,θ̂
(t)
med))

else (6)

where

B̂(t)avg ∶=
1

N
∑

i∈N (t)

CS

∑
k=1

exp (ŝ(t−1) ⋅ cos θi,k − f (t)max) (7)

and θ̂
(t)
med is the median of the mixed-up angles θmixed

k,yk
. For a

mixed-up sample xmixed
k = λxi + (1 − λ)xj of the mini-batch

with λ fixed, this means

θmixed
k,yk

∶= λθi,yi + (1 − λ)θj,yj . (8)

Finally, the probabilities of sample xi belonging to class j are
given by

P̂i,j ∶= ∑
l∈M(j)

exp(ŝ ⋅ cos θi,l)
∑CSk=1 exp(ŝ ⋅ cos θi,k)

(9)

where M(j) denotes all sub-clusters belonging to class j.

C. Outlier detection backend

When training a neural network to extract representations
for anomaly detection, there are multiple ways of how to
obtain scores and reach a final decision. Now, by using an
angular margin loss, the most natural choice to calculate a
score besides using the model itself, is to use the cosine
similarity of a sample to the center of the corresponding class.
A Gaussian distribution can also be seen as an alternative
version of the cosine similarity, since the representations are
trained such that they are scattered around a learned mean
value after projecting them onto the unit sphere by normalizing
their lengths, and the unit sphere is locally Euclidean as a
manifold. Moreover, Gaussian distributions are more general
than the cosine similarity as a scoring method because the
cosine similarity is equivalent to using a Gaussian distribution
with a spherical covariance matrix i.e. a diagonal matrix with
all entries being equal. This is not a problem when doing
closed-set classification because only the closest class mean is
important. But for anomaly detection, this assumption does not
need to be true as illustrated in Fig. 1. Therefore, a Gaussian
distribution with full covariance matrix can more accurately
estimate the distribution of the normal samples, in case it
slightly deviates from a spherical distribution. This makes the
detection of anomalies slightly more robust and thus a full
covariance matrix is more suitable for the task. When using
sub-cluster AdaCos, one can use a GMM with multiple modes



normal samples of class 1
anomalous samples of class 1
normal samples of class 2
anomalous samples of class 2

Fig. 1. Scatter plot of normal and anomalous data belonging to two different
classes after projecting 3 dimensional representations onto the unit sphere and
locally embedding the unit sphere into the 2 dimensional space. Both classes
can be easily separated by measuring the distance to the mean. For class 1,
anomalies can also be detected reasonably well, but for class 2 only measuring
the distance to the mean does not work well because the data is not distributed
spherically. In this case, a Gaussian with full covariance matrix would perform
much better. Note that this plot is exaggerated for illustration purposes because
an angular margin loss ensures that the distribution for each class is roughly
spherical. Still, the distribution can slightly deviate from that making a full
covariance matrix more suitable, especially in higher-dimensional spaces.

equal to the number of sub-clusters and initialize the means
of the modes as the learned sub-cluster centers. After training,
the highest log-probability among all the modes can be utilized
as an anomaly detection score.

IV. EXPERIMENTAL RESULTS

A. Dataset

For all experiments in this work the dataset belonging to
task 2 “Unsupervised Detection of Anomalous Sounds for
Machine Condition Monitoring” [4] of the DCASE challenge
2020 is used. As the name already implies, the task is to
tell whether a recording is normal i.e. belongs to a fully
functioning machine or not. The dataset consists of Wav files,
each of length 10s and a sampling rate of 16kHz. Each file
belongs to one of six different machine types, namely “fan”,
“pump”, “slider”, “valve” from MIMII [23] and “ToyCar”
and “ToyConveyor” from ToyADMOS [24]. For each of the
6 machine types there are 7 different machine ids except
for “ToyConveyor”, which has recordings from 6 different
machines. When training and testing it is known to which
of the total 41 machines a given audio file belongs to.
Furthermore, the dataset is divided into a training set, only
consisting of around 1000 normal samples of all machine ids,
and a development set and an evaluation set, both consisting of
a few hundred normal and anomalous samples from mutually
exclusive sets of 3 or 4 machine ids for each machine type.
It is not allowed to use any of the files from the development
or evaluation set for training. Hence, only normal data is
available to train the system and it is known that the training
dataset consists of normal samples only. Therefore, despite its
name, the anomaly detection task is actually semi-supervised
instead of unsupervised. The evaluation metrics for the dataset

TABLE I
MODIFIED RESNET ARCHITECTURE USED FOR ALL EXPERIMENTS.

layer name structure output size

input - 313 × 128
2D convolution 7 × 7, stride= 2 157 × 64 × 16
residual block (3 × 3

3 × 3) × 2, stride= 1 78 × 31 × 16

residual block (3 × 3
3 × 3) × 2, stride= 1 39 × 16 × 32

residual block (3 × 3
3 × 3) × 2, stride= 1 20 × 8 × 64

residual block (3 × 3
3 × 3) × 2, stride= 1 10 × 4 × 128

max pooling 10 × 1, stride= 1 4 × 128
flatten - 512
dense (representation) linear 128
AdaCos - 41

are the area under the receiver operating characteristic (ROC)
curve (AUC) and the partial AUC (pAUC) with p = 0.1. The
metric pAUC is the AUC computed under a low false-positive-
rate range, namely [0, p], which is used because a high true-
positive-rate is desirable under this conditions in practical
applications to avoid frequent false alarms. For more details
about the dataset, the reader is referred to [4].

B. Input features and neural network architecture

Using the dataset described above a neural network archi-
tecture for extracting lower-dimensional representations of the
data as well as their input features need to be defined. Doing
so is the purpose of this section. First, the raw waveforms
are converted into log-Mel spectrograms to initially reduce
their dimension. More concretely, log-Mel spectrograms with
128 Mel bins, a window size of 1024 and a hop size of
512 are computed, which results in a time dimension of 313.
Before inserting them as features into the neural network,
all log-Mel spectrograms are normalized by subtracting the
temporal mean and dividing by the temporal standard deviation
of all files belonging to the training dataset. It has also
been experimented with using openL3 embeddings [25] as
intermediate representations instead of directly using the log-
Mel spectrograms as done in [17], [26], but this degraded the
performance.

The network architecture used in this work is a modified
version of the ResNet architecture [27] with only a few layers
and extracts 128-dimensional representations of the data. In
each residual block, the leaky ReLU activation function [28]
and batch normalization [29] are used. A detailed description
of the model can be found in Tab I. It is worth noting that
increasing the number of sub-clusters S used for AdaCos also
increases the number of parameters significantly. A model
without sub-clusters has 772,192 trainable parameters and
when using 64 sub-clusters, which results in the largest model
used in the conducted experiments, this number increases to
1,102,816. Still, the number of parameters is relatively small.
When training the model, the training data belonging to all 41
machine ids is used. Using L2-regularization applied to the



TABLE II
MEAN AUCS AND PAUCS OBTAINED WITH DIFFERENT BACKENDS ON

THE DEVELOPMENT AND EVALUATION SET.

backend development set evaluation set
AUC pAUC AUC pAUC

representation model output 87.20% 81.70% 89.55% 83.79%
cosine similarity to mean 88.71% 82.12% 91.13% 84.40%
cosine similarity to top 10 88.69% 82.12% 91.10% 84.38%
two-covariance PLDA 88.25% 82.18% 90.90% 84.32%
Gaussian (spherical covariance) 88.69% 82.12% 91.11% 84.38%
Gaussian (diagonal covariance) 88.71% 82.16% 91.12% 84.39%
Gaussian (full covariance) 89.13% 82.59% 91.43% 84.47%

weights, the model is trained for 400 epochs with a batch-
size of 64 to discriminate among these classes by minimizing
different versions of the AdaCos loss with Adam [30] and
is implemented in Tensorflow [31]. Unless stated otherwise,
“mixup” [19] with a mixing coefficient drawn from a uniform
distribution and no other data augmentation technique is used.

C. Comparison of different backends

First, the performance obtained with different backends will
be compared. For that purpose, a neural network with the
standard AdaCos loss and using mix-up is trained to extract
the representations. Using the same extracted embeddings,
multiple backends are evaluated: the output of the model itself,
the cosine similarity to the mean of each machine id, the
mean of the cosine similarities to the 10 closest representations
from the training set belonging to the same machine id, the
log-likelihood ratios of a two-covariance PLDA model as
implemented in [32] and Gaussian distributions, each trained
for a single machine id, with a spherical, diagonal or full
covariance matrix as implemented in scikit-learn [33]. The
results can be found in Tab. II.

There are four observations to be made. First, the direct
angular softmax output of the model performs significantly
worse than all other scoring techniques. Second, PLDA per-
forms better than the direct output but still worse than the
remaining backends. Third, as expected, the cosine similarity
based backends and the Gaussians with spherical or diagonal
covariance matrix all lead to very similar results supporting
the claim from before that they are equivalent. And fourth, a
Gaussian with a full covariance matrix outperforms all other
backends. Hence, in all remaining experiments only Gaussians
with full covariance matrix will be used as backends.

D. Interplay of mixup and AdaCos

Next, it is investigated whether including mixup for training
the model and the proposed changes of the AdaCos loss
function to properly work with mixup improve the perfor-
mance. The results are depicted in Tab. III. One can see
that the performance decreases significantly, when not using
mixup, even when the standard AdaCos loss is used as it is.
Furthermore, the proposed changes to the AdaCos loss lead to
significant improvements in terms of AUC and pAUC on the
development set. For the evaluation set, AUC slightly increases
and pAUC slightly decreases. A possible explanation for this

TABLE III
MEAN AUCS AND PAUCS OBTAINED WITH MIXUP AND THE MODIFIED

ADACOS LOSS, BUT WITHOUT USING SUB-CLUSTERS, ON THE
DEVELOPMENT AND EVALUATION SET.

mixup modified development set evaluation set
AdaCos AUC pAUC AUC pAUC

86.96% 80.68% 89.63% 82.47%
7 diverges diverges diverges diverges

7 89.13% 82.59% 91.43% 84.47%
7 7 91.60% 85.01% 91.64% 83.93%

TABLE IV
MEAN AUCS AND PAUCS OBTAINED WITH THE MODIFIED SUB-CLUSTER

ADACOS LOSS ON THE DEVELOPMENT AND EVALUATION SET.

number of backend development set evaluation set
sub-clusters AUC pAUC AUC pAUC

1 Gaussian 91.60% 85.01% 91.64% 83.93%
2 Gaussian 90.97% 82.54% 92.08% 85.08%
4 Gaussian 91.54% 83.53% 92.62% 84.31%
8 Gaussian 91.61% 85.24% 92.99% 85.74%

16 Gaussian 91.85% 85.61% 93.98% 88.27%
32 Gaussian 92.22% 85.69% 94.56% 87.51%
64 Gaussian 91.39% 83.58% 93.85% 85.43%
1 GMM 91.60% 85.01% 91.64% 83.93%
2 GMM 91.07% 82.70% 92.20% 85.60%
4 GMM 91.67% 83.70% 92.64% 84.35%
8 GMM 91.85% 85.46% 93.13% 86.07%

16 GMM 92.10% 85.84% 94.08% 88.59%
32 GMM 92.57% 86.37% 94.69% 87.90%
64 GMM 92.03% 84.06% 94.16% 86.19%

behavior is the randomness involved in training a neural
network. Overall, the modifications still seem to improve the
performance. When using the modified AdaCos loss and no
mixup, the loss diverges because ŝ(t) grows exponentially. A
proof can be found in the appendix.

E. Using sub-clusters for AdaCos

Now, further experiments are conducted to show that using
sub-clusters inside the AdaCos loss improves the outlier de-
tection performance. For this purpose, the neural network is
trained with an increasing number of sub-clusters and evalu-
ated with a single Gaussian and a GMM with modes equal
to the number of sub-clusters as backends. The corresponding
AUCs and pAUCs obtained on the development and evaluation
set are shown in Tab. IV.

One can draw two main conclusions from the experimental
results. First, using sub-clusters is highly beneficial, especially
to increase the performance on the evaluation set. Note that
by doing so, it is also possible to exclude potential outliers
from the training data by removing small sub-clusters as done
in [22]. Thus, this procedure is also well-suited for truly
unsupervised anomaly detection problems instead of semi-
supervised ones. A second conclusion is that using a GMM
instead of a single Gaussian always improves the results
because it can be fitted more accurately to the individual sub-
clusters of the distribution.



TABLE V
MEAN AUCS AND PAUCS PER MACHINE TYPE OBTAINED WITH

DIFFERENT REPRESENTATIONS ON THE DEVELOPMENT AND EVALUATION
SET. WHEN USING THE COMBINED REPRESENTATIONS, ONLY THE

LEARNED REPRESENTATIONS ARE USED, EXCEPT FOR MACHINE TYPE
TOYCONVEYOR WHERE THE MEAN IS USED INSTEAD.

representation machine type development set evaluation set
AUC pAUC AUC pAUC

mean fan 80.73% 66.16% 95.32% 80.62%
max fan 64.59% 51.48% 78.98% 57.70%
learned fan 87.61% 77.93% 97.60% 93.24%

mean pump 82.99% 68.50% 88.24% 70.36%
max pump 70.13% 59.17% 68.96% 55.08%
learned pump 94.71% 88.91% 96.76% 88.30%

mean slider 87.46% 63.95% 72.16% 53.08%
max slider 93.69% 76.69% 90.55% 70.65%
learned slider 99.55% 97.63% 97.61% 89.46%

mean valve 55.59% 50.23% 54.86% 52.09%
max valve 98.54% 93.08% 96.35% 88.18%
learned valve 98.63% 94.62% 98.81% 95.80%

mean ToyCar 94.10% 80.94% 91.54% 76.87%
max ToyCar 68.36% 53.85% 70.31% 54.90%
learned ToyCar 96.37% 91.64% 95.99% 91.93%

mean ToyConveyor 85.78% 67.76% 91.74% 78.13%
max ToyConveyor 57.51% 50.39% 65.40% 53.06%
learned ToyConveyor 73.89% 61.22% 81.37% 68.64%

mean all 80.91% 66.19% 82.31% 68.52%
max all 76.25% 64.71% 78.42% 63.26%
learned all 92.57% 86.37% 94.69% 87.90%
combined all 94.21% 87.13% 96.42% 89.24%

F. Utilizing simple representations

Instead of learning representations of the data by training
a neural network, one can also use simple representations
directly derived from the data. These representations have the
advantage that extracting them does not require any training
and they possibly contain useful information about the data
that is not needed to discriminate among the classes and thus
not contained in the trained representations. On the other hand,
it is by no means ensured that these representations contain any
useful information for detecting anomalous data at all. In this
work, the mean and maximum of the log-Mel frequency bins
over time are investigated as alternative representations. For
this purpose, their performance is evaluated by estimating their
distribution with a single Gaussian component each and using
the resulting log-probabilities to detect outliers. The results
can be found in Tab. V.

First, it can be seen that for most machine types, except
“ToyConveyor”, the trained representations perform best. But
for some cases, the simple representations work surprisingly
well. Examples are the maximum values for machine type
“valve” and mean value for “ToyConveyor”, which even
outperforms the learned representation. The reason is that the
performance of the learned representation is much worse for
“ToyConveyor” than for all other machine types. This behavior
can be found for many of the submitted systems e.g. [12],
[15] and the exact reasons are still unclear. Koizumi et al.
[4] speculate that the normal samples belonging to different
machine ids of “ToyConveyor” are very similar and thus

discriminative approaches have difficulties in finding decision
boundaries. The other way around, i.e. using the mean value
for “valve” and the maximum values for “ToyConveyor” leads
to very poor performance, close to random guessing, in both
cases. This is the reason why one cannot simply concatenate
all three representations to obtain a single representation for
all machine types because it would significantly degrade the
performance. The best overall performance is achieved, by
using the mean representations for “ToyConveyor” and the
learned representations for the other machine types.

G. Comparing the performance to other published systems

Last but not least, the presented approach is compared to the
five highest-ranked systems submitted to task 2 of the DCASE
challenge 2020. To our best knowledge, no more recent work
has been published and thus these systems represent the state-
of-the-art. The results can be found in Fig. 2 and Fig. 3. First
and foremost, the presented system significantly outperforms
every other published system, both in terms of AUC and
pAUC. This can easily be seen by comparing its performance
to the one of the winning system of the challenge [34]. The
proposed approach has a higher score for every machine
type, except “slider” where the performance is the same.
Furthermore, for most systems there is at least one machine
type where the performance drops significantly, compared to
the other systems, whereas the presented approach performs
reasonably well for all machine types.

Note, that all systems but the one submitted by Primus
[36] consist of an ensemble of multiple, very different models
whereas the presented system consists of just a single model.
Thus, for completeness an ensemble consisting of multiple
versions of the proposed approach, each trained with another
number of sub-clusters, ranging from 20 to 26, is also included.
The ensemble is realized by summing the log-probabilities
of all GMMs belonging to the subsystems. As expected, this
ensemble significantly outperforms the system based on a
single model and reaches a mean AUC of 97% and a mean
pAUC of 91.24%.

V. CONCLUSIONS AND FUTURE WORK

In this work, multiple changes to the standard AdaCos
loss specifically aimed at learning lower-dimensional rep-
resentations for anomalous sound detection are proposed.
In experiments conducted on the DCASE 2020 dataset for
“Unsupervised Detection of Anomalous Sounds for Machine
Condition Monitoring”, it is shown that Gaussians or more
generally GMMs outperform other widely used backends,
namely the direct output of the trained model, cosine similarity
and PLDA. Furthermore, using mixup in combination with
modified parameter computations for AdaCos further improves
the obtained results. By also using multiple learned sub-
clusters instead of a single one for each class, less restrictive
distributions than a single Gaussian for the representations of
the data are learned. As a result, an even higher anomalous
sound detection performance is achieved. In an additional
experiment, the learned representation is compared to simple
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Fig. 2. Comparison of the AUCs obtained on the evaluation set with the top five highest-ranked systems submitted to the DCASE 2020 challenge task 2, the
proposed approach and an ensemble. The ensemble consists of the sum of all log-probabilities given by GMMs belonging to trained models of the proposed
approach with a different number of sub-clusters, ranging from 20 to 26.
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Fig. 3. Comparison of the pAUCs obtained on the evaluation set with the top five highest-ranked systems submitted to the DCASE 2020 challenge task 2, the
proposed approach and an ensemble. The ensemble consists of the sum of all log-probabilities given by GMMs belonging to trained models of the proposed
approach with a different number of sub-clusters, ranging from 20 to 26.

representations, namely the temporal mean and maximum of
the log-Mel spectograms, and is shown to outperform them
except for the machine type “ToyConveyor” where using the
mean leads to the best results. Last but not least, the pre-
sented approach is shown to significantly outperform all other
published systems on this dataset even when not ensembling
multiple subsystems.

There are still some open questions to be answered. For the
machine type “ToyConveyor”, the performance of the learned
representations is worse than simply taking the temporal mean
of the log-Mel spectrogram. This shows that there is still room
for improving the training process of the learned represen-
tations. One way to accomplish this could be using a self-
supervised learning paradigm instead of training discrimina-
tively among the known classes as done in [14]. Additionally,
future work should also be aimed at clarifying why the
performance for this particular class is worse to gain insights
that may also be helpful for anomalous sound detection in
general. Another way to further improve the performance of
the presented model is to use more sophisticated approaches
to mix samples than plain mixup. A collection of ways to mix
samples can be found in [39].
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APPENDIX

Remark. The adaptive scale parameter ŝ(t) of the modified
AdaCos loss grows exponentially when not using mixup.

Proof. After a few training iterations without mixup i.e. for
t > t0 ∈ N, most training samples will have a very small angle
to their associated class, i.e. θi,yi ≈ 0. Therefore, cos θi,yi ≈ 1

and thus also cos θ̂
(t)
med ≈ 1. Furthermore, as empirically shown

in [7], on average θi,k < π
2

and thus cos θi,k > 0 for most
k ≠ yi. Hence, by using the fact that the logarithm is a concave
function and applying Jensen’s inequality we obtain

ŝ(t) =
f
(t)
max + log B̂

(t)
avg

cos (min(π
4
, θ̂
(t)
med))

≈ log( 1

N
∑

i∈N (t)

CS

∑
k=1

exp (ŝ(t−1) ⋅ cos θi,k))

≥ 1

N
∑

i∈N (t)

CS

∑
k=1

ŝ(t−1) ⋅ cos θi,k

≈ ŝ(t−1)(1 + 1

N
∑

i∈N (t)

CS

∑
k=1
k≠yi

cos θi,k
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>0

)

(10)

showing that ŝ(t) grows exponentially when not using mixup.
Note that this inequality does not hold if only mixed-up
samples are used for training. The reason is that most samples
belong to multiple classes and thus do not have an angle of
approximately 0 to their corresponding class mean because
AdaCos increases the margin between classes.


