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Abstract
Supervectors represent speaker-specific Gaussian Mixture
Models which are enrolled from a Universal Background
Model (UBM) and approximate the unknown, underlying
speech feature distributions. But as supervectors only con-
sist of the stacked means of the Gaussian components, low-
dimensional i-vectors which are derived from them do not
completely capture the true feature distributions. In this
work, the classical supervectors are extended with addi-
tional parameters before reducing their dimension to cap-
ture the feature distributions more accurately and comple-
ment the i-vectors more effectively. To extend a super-
vector, the mixture weights, the log-likelihood values of
the UBM, a Bhattacharyya-distance based kernel and the
Hellinger distance between each enrolled Gaussian com-
ponent and the corresponding one of the UBM are used.
In closed-set speaker identification experiments conducted
on the NTIMIT corpus which consists of telephone qual-
ity speech, the extended supervectors provide significantly
lower error rates than the standard supervectors, even after
fusing them with i-vectors and the UBM.

1 Introduction
The first step when recognizing speakers is to extract many
short-time features from given speech segments. Most com-
monly, Mel-Frequency Cepstral Coefficients (MFCCs) [1]
or Perceptual Linear Prediction (PLP) [2] features are used
for that purpose. Naturally, these features vary heavily
from frame to frame especially when considering noisy or
low-quality speech. To obtain a single speaker-dependent
mathematical object which is robust to these variations,
the unknown distributions of the features are approximated
with Gaussian Mixture Models (GMMs) obtained by en-
rolling a Universal Background Model (UBM) [3]. This
UBM is a GMM trained on features extracted from a large
amount of unlabeled speech data called “development set”.
Supervectors serve as a compact representation of the un-
derlying feature distributions and are obtained by stack-
ing the means of the Gaussian components of the speaker-
specific GMMs. As these supervectors are very high-di-
mensional and thus are difficult to handle effectively, the
next step is to reduce their dimension with the speaker-
independent i-vector model [4]. Probabilistic Linear Dis-
criminant Analysis (PLDA) [5] is applied afterwards to
split the i-vectors into speaker- and channel-dependent com-
ponents of low dimension.

Clearly, the supervectors do not completely capture the
feature distributions as they only consist of the means of
the Gaussian components. When extracting the i-vectors,
the log-likelihood of the mixture components given the
data and therefore also their weights and covariance ma-
trices come into play but still some information about the
feature distribution is inherently lost. Hence, it is apparent

that i-vectors are certainly good but not optimal represen-
tations of given utterances.

Prior to the rise of i-vectors other attempts using all
the parameters of the enrolled GMMs and UBM have been
made to deal with the high-dimensional supervectors. Most
prominently, Support Vector Machines (SVMs) have been
applied with kernels based on the Kullback-Leibler (KL)
divergence [6] and the closely related Bhattacharyya Dis-
tance [7, 8]. But usually, the combination of i-vector and
PLDA tends to result in a much better performance. Also,
directly comparing the enrolled GMMs with f -divergences
does not lead to lower error rates [9, 10].

To incorporate all the relevant information about the
feature distributions into the supervector, we propose to ex-
tend the supervectors by concatenating the classical ones
with a) the weights of the Gaussian components, b) the
log-likelihood values of the UBM’s mixture components,
c) a Bhattacharyya-distance based SVM kernel and d) the
Hellinger distance of each enrolled Gaussian component
to the corresponding one of the UBM. In Section 2, the re-
sulting supervectors’ structure is described in detail. The
dimension of these extended supervectors is reduced with
PCA and the computational requirements are compared to
those of i-vectors. Furthermore, PLDA will be used af-
terwards because this greatly increases the recognition ac-
curacy. As shown in closed-set speaker identification ex-
periments conducted on the NTIMIT corpus in Section 3,
the extended supervectors are greatly improving upon the
standard supervectors in terms of identification error rate.
Moreover, combining them with i-vector and UBM leads
to a further reduction in error rate over the standard super-
vectors.

2 Extending the Supervectors
2.1 Standard Supervectors
Before reviewing the definition of standard supervectors,
the notation used throughout the paper will be presented.
Let λU := (wUm,µ

U
m,Σ

U
m)m=1,...,M denote the parameters

of a UBM with M ∈ N Gaussian components for a fea-
ture dimension of D ∈ N. Here, wUm ∈ [0,1] is the mixture
weight, µUm ∈ RD the mean and ΣUm ∈ RD×D the diagonal
covariance matrix of component m ∈ {1, ...,M}. Further-
more, let S be a finite set of speakers. For each speaker
S ∈S , λS := (wSm,µ

S
m,Σ

S
m)m=1,...,M denotes the param-

eters of the GMM obtained by enrolling the UBM λU .
Classically, the normalized supervector corresponding

to speaker S ∈S is defined as

VS :=

 (ΣU1 )
−1(µS1 −µU1 )

...
(ΣUM )−1(µSM −µUM )

 ∈ RDM .

It is immediately visible that not all parameters of the Gaus-



sian Mixture Models are contained in the supervectors and
therefore some information about the underlying speech
feature distributions is inherently missing.

2.2 Extended Supervectors
The extended supervector for any given speaker S ∈S is
defined as

XS :=


VS

wS

logP(XS |λU )
BCK(λS ,λU )

H(λS ,λU )

 ∈ R(3D+4)M

where XS ∈ RD×N for some N ∈ N denotes the features
used for enrolling speaker S and VS ∈ RDM denotes the
unnormalized supervector, i.e. just the stacked means of
all Gaussian components. Furthermore, wS ∈ RM con-
sists of all the mixture weights and logP(XS |λU ) ∈ RM
contains the stacked log-likelihood values of the UBM’s
components given the enrollment data XS .

The supervector and weights have not been normalized
with respect to the UBM because the normalized versions
also appear in the Bhattacharyya distance based SVM ker-
nel. Thus, cases can be found where the unnormalized
entries contain complementing information whereas nor-
malizing them ensures that the entries are redundant. In
any case, applying PCA to the extended supervectors will
only preserve indispensable information which allows us
to add both, the normalized and unnormalized entries with-
out harming the performance.

The last two entries of the extended supervector will
now be described in detail. The first one is the extended
SVM kernel based on the Bhattacharyya distance given
in [8] which has been chosen because it performed best
among the kernels tested by the authors. For mixture com-
ponent m ∈ {1, ...,M}, it is defined as

BCKm(λS ,λU ) :=


(

ΣSm+ΣUm
2

) 1
2
(µSm−µUm)

diag
((

ΣSm+ΣUm
2

) 1
2
(
ΣSm

)− 1
2

)
wUm
wSm

 .

and appended to the supervector via

BCK(λS ,λU ) :=

 BCK1(λ
S ,λU )

...
BCKM (λS ,λU )

 ∈ R(2D+1)M .

The Hellinger distance (see e.g. [11]) for a single Gaus-
sian mixture component m ∈ {1, ...,M} can be computed
as

Hm(λS ,λU ) :=
[

1− det(ΣSm)
1
4 det(ΣUm)

1
4

det
(

ΣUm+ΣSm
2

) 1
2

· exp
(
− 1

8
(µSm−µUm)>

(
ΣSm+ΣUm

2

)−1

(µSm−µUm)

)] 1
2
.

These distances are added to the supervector by setting the

last entry to

H(λS ,λU ) :=

 H1(λ
S ,λU )
...

HM (λS ,λU )

 ∈ RM .

The Hellinger distance is a bounded metric, opposed to the
Bhattacharyya distance (BC) (see e.g. [7]) which does not
obey the triangular inequality, and therefore induces more
structure on the space of probability distributions. This is
the reason why it as also been added to the supervector
although we already added a kernel based on the Bhat-
tacharyya distance and both distances are strongly con-
nected through the identity

H(λS ,λU ) =
√

1−BC(λS ,λU ).

Note that BC denotes the Bhattacharyya distance and not
the kernel BCK from above. Furthermore, the kernel is de-
rived from an upper bound of the Bhattacharyya distance
and not the distance itself. This may be another reason that
the kernel behaves differently than the Hellinger distance
and using both of them ensures that all information is cov-
ered.

As a last preprocessing step, the extended supervector
is standardized by subtracting the mean and dividing by the
standard deviation of the extended supervectors obtained
from the development data. The reason for this is that the
components have entirely different scales leading to prob-
lems when applying PCA which requires similarly scaled
variables (see [12]). As a side effect, the dimensionally
reduced, extended supervectors do not need to be “Gaus-
sianized” i.e. projected to the unit sphere before applying
PLDA which needs to be done when using i-vectors.

2.3 Comparing Computational Complexities
By definition (and as the name already indicates), the di-
mension of the extended supervector is much higher than
the dimension of the standard supervector. More precisely,
it is (3D + 4)M instead of DM i.e. the dimension is
more than three times higher and thus it is clear that the
runtime also increases. Still, using extended supervectors
with PCA has a lower computational complexity in terms
of runtime than using i-vectors as we will show now.

Let R ∈ N denote the reduced target dimension of ap-
plying PCA as well as the dimension of the i-vectors and
N ∈ N the number of supervectors used for training both
models. When stating the computational complexities, we
will make use of the fact that usually 3D+ 4 < R (typi-
cal values are R = 400,D = 60) and thus MR serves as
an upper bound of the extended supervector’s size. There-
fore, the computational complexity of extracting a single
i-vector is O(MDR+MDR2 +R3) (see [13])1 whereas
reducing the dimension via PCA is a simple matrix mul-
tiplication with a computational complexity of O(MR2).
However, we also need to take into account that the com-
ponents of the extended supervector have to be computed.
But as we assumed diagonal covariance matrices, all oper-
ations for a single component of the extended supervectors
can be executed in O(D) or even O(1). Thus, O(MDR) is
needed for calculating all components. This leads to a total

1In the paper, the computational complexity is incorrectly stated as
O(MDR+MR2 +R3) which is probably just a typo. Nevertheless, the
given argumentation still holds.



computational complexity of O(MDR+MR2) for com-
puting the extended supervectors and reducing their di-
mension. Hence, extracting extended supervectors and ap-
plying PCA is indeed much faster than extracting i-vectors.
Although it is possible to lower the computational costs
(see e.g. [13]), doing so sacrifices some performance be-
cause this slightly increases the resulting error rates.

Training the models can be done offline and needs to
be done only once. Therefore, the computational complex-
ities for computing the models are not that important, but
from our experience training the PCA model is also much
faster than training the i-vector model.

3 Experiments
3.1 Experimental Setup
The NTIMIT corpus [14] consists of speech sent over tele-
phone channels of 630 speakers each with 10 utterances
of about 3 seconds length. For each speaker, the 5 pho-
netically compact “SX” and 3 phonetically diverse “SI”
utterances were labeled as training data and the other 2
remaining “SA” utterances, which are the same two sen-
tences spoken by each speaker, were used for testing. Fur-
thermore, we downsampled all data from 16kHz to 8kHz
to save memory. Since the signals are band-limited any-
way, this does not degrade the performance.

As features, 19 dimensional MFCCs as well as PLP co-
efficients of the same dimension have been extracted from
the utterances by using the HTK toolkit [15]. For calculat-
ing the features, Hamming-weighted frames with a length
of 25ms and an overlap of 10ms have been used. In ad-
dition to that, Spectral Subband Centroids (SSCs) [16],
Glottal Mixture Model (GLOMM) [17, 18] and pitch fea-
tures have been evaluated to show that extending the super-
vector is beneficial regardless of the speech features being
used. The algorithm that has been used to extract the pitch
features is the following: First, the signal is divided into
Hanning-weighted frames and the highest peak rτ ∈ R>0
in the autocorrelation-function of each frame which is in
the range of human pitch is detected. The two-dimensional
pitch features consist of the logarithm of the pitch period
τ ∈ R>0 which is the position of that peak and the pitch
amplitude which is given by rτ

r0
∈ (0,1).

To simplify the experimental setup, the features of the
training data were also used as the development data. Due
to the lack of validation data, none of the parameters has
been fine-tuned but all are set to reasonable values suitable
for measuring identification error rates. It should be noted,
that in practical applications it is rarely the case that vali-
dation data is available at all and therefore this approach is
much more realistic.

Using MFCC, PLP and SSC features, we trained diag-
onal-covariance UBMs with 256 Gaussian components for
5 iterations with a minimum standard deviation of 0.0001.
For the GLOMM and pitch features we only used 32 com-
ponents as they usually perform better when using only a
few components. The i-vector models have been trained
for 50 iterations and their dimension is 400. When apply-
ing PCA to the standard or extended supervector, the same
dimension of 400 has been used to be able to compare the
results. Since the pitch features are only 2 dimensional
and therefore the corresponding supervector is only of size
64, we used a target dimension of size 25 for the i-vectors
and standard supervectors instead. But after extending the
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Figure 1: Identification error rates of i-vector, the standard
and the extended supervector for each of the 5 features.
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Figure 2: Identification error rates of the standard super-
vector and the extended supervector obtained after fusing
with the scores of UBM and i-vector for each of the 5 fea-
tures alone and all of them combined.

pitch supervectors, the increased dimension allowed us to
use a larger target dimension of size 200. In any case,
the extended supervectors have been standardized with the
mean and standard deviation of the development/training
data before reducing their dimension with PCA. For all
three representations of the supervectors, a PLDA model
with a latent variable dimension of 200 has been trained
for 20 iterations using the fastPLDA toolkit [19].

To evaluate a method, we conducted 500 independent
trials in which 10 speakers were chosen at random and the
two test files of each speaker were evaluated. Thus, each
experiment consisted of 10000 individual 10 speaker clas-
sification trials. The same fixed sets were used for all the
tests to have comparable results.

3.2 Experimental Results
In Fig. 1, the identification error rates obtained with i-
vectors, standard and extended supervectors are depicted
for all 5 features. Without exception, the error rates of the
extended supervector are significantly lower than the ones
of the standard supervector. On average, the reduction is
about 32.5%. Thus, extended supervectors cover more in-
formation about the speech feature distributions.

When comparing the performance of the i-vector mod-
els with the extended supervectors, no general statement
can be made about their relation in terms of identification
error rate. For both well-performing features (MFCC and
PLP), i-vectors lead to lower error rates and on other occa-
sions (pitch, GLOMM and SSC) extendended supervectors
are superior. One observation to be made is the difference
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Figure 3: Difference between the identification error rates
obtained with the full extended supervector and the case
that one of its five components is missing. The missing
components are numbered in order of their appearance in
the definition of the extended supervector. To give an il-
lustrative example, the error rate increased from 3.05% to
3.55% when evaluating the performance of the extended
supervector based on MFCCs without its first component
which corresponds to a relative difference of 16.39% and
is depicted by the first bar.

in dimension, as a smaller number of Gaussian Compo-
nents has been used for pitch and GLOMM features which
both fall into the latter category. Therefore, this indicates
that the extended supervector leads to a smaller error rate
when only a few Gaussian components are used.

It should be recalled to memory that the pitch i-vectors
have a dimension of size 25 and for the extended super-
vectors a PCA-dimension of size 200 has been used due
to the low dimensional nature of the pitch features. If the
extended supervectors are also reduced to a dimension of
size 25, the identification error rate is only 28.41% which
makes them worse than the i-vectors. Hence, it can be con-
cluded that extending the supervector may even be benefi-
cial if the feature dimension is very low which forces the
corresponding i-vector dimension to be small, too.

As the performance of extended supervectors compared
to i-vectors differs greatly, one essential step is to combine
both approaches. By doing so, one always gets a perfor-
mance which is better than the best individual one. In ad-
dition to that, the results of the enrolled UBM can also be
used for combination in case that it covers different infor-
mation about the speech feature distributions. The combi-
nation is done by fusing the resulting log-likelihood values
and scores with a weighted sum. To find the optimal fu-
sion coefficients an Evolutionary Algorithm (EA) [20] has
been applied. Note that these coefficients may be a bit too
optimistic as they are difficult to obtain in real life appli-
cations but are suitable for the purpose of comparing the
performances. Fig. 2 shows the resulting identification er-
ror rates obtained after fusing i-vectors and the UBM with
standard supervectors as well as fusing them with extended
supervectors. It is clearly visible that the extended su-
pervector still outperforms the standard supervector, even
when all 5 features are combined. On average, the error
rates are 16.21% lower. Hence, the extended supervectors
contain information that has not yet been covered by the
i-vectors and the standard supervectors.

In a last experiment we tried to measure the informa-
tion content of all five components of the extended su-
pervector. For that purpose, the identification error rates
have been determined using the same dimension of size

400 in case one of the extended supervector’s components
is missing. The new error rates obtained this way have
been compared to the error rates where all components
are used. In Fig. 3, the relative difference between both
error rates is depicted for all of the five features. Values
above zero percent indicate that the corresponding missing
component contains complementing information whereas
values below show that the error rate actually decreased
when this component has not been included. In order of
magnitude, the mean differences are 16.11% for the Bhat-
tacharyya distance based kernel, 4.88% for the Standard
Supervector, 1.01% for the Hellinger distance, 0.98% for
the log-likelihood values of the UBM and −0.08% for the
weights. Hence, it can be argued to omit the weights be-
ing the only component which does not lead to a signif-
icant improvement. This makes sense, as the normalized
weights are contained in the Bhattacharrya distance based
kernel. But on the other hand, they also helped to decrease
the error rate obtained with the pitch features and therefore
may also be helpful in other cases which have not been
covered in this experiment. Anyway, the other four com-
ponents do contain complementing information and thus
are essential parts of the extended supervector.

4 Conclusions and Future Work
In this work, an extended supervector for the purpose of
capturing all available information about the approximated
speech feature distributions has been defined. It consists
of the means and weights of all Gaussian components, the
log-likelihoods of the UBM, a kernel based on the Bhat-
tacharyya distance and the Hellinger distance between all
mixture components of the enrolled UBM and the UBM
itself.

Despite the fact that extended supervectors are more
than 3 times larger than standard supervectors, it has been
shown that the computational complexity of using them
is still lower than the one of using i-vectors. As seen in
closed-set speaker identification experiments conducted on
the NTIMIT corpus, this extended supervector has a per-
formance which is on average 32.5% better than the one of
the standard supervector. When combining the presented
approach with i-vector and UBM via score-based fusion,
on average 16.25% lower identification error rates are ob-
tained compared to a fusion with the standard supervector.

The performance in relation to the widely used i-vector
greatly varies as in some cases the extended supervector
has a lower error rate and in other cases i-vectors yield bet-
ter results. But after the fusion, significantly lower identifi-
cation error rates are obtained compared to i-vector alone.
Therefore, the extended supervector fulfills its purpose and
acts as a complementary source of information about the
speech feature distribution. Hence, the extended supervec-
tor is a useful supplement to every speaker recognition sys-
tem based on i-vectors.

One possibility to further increase the performance may
be to reduce the dimension of the extended supervector in
a more sophisticated way than applying PCA and should
be worth investigating. In addition to that, the extendend
supervector should be fused not only with i-vectors but
also with the recently proposed speaker embeddings, also
called x-vectors, [21–23] which are extracted with deep
neural networks. Doing that and evaluating the perfor-
mance on a NIST Speaker Recognition Evaluation task is
subject to future work.
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