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Abstract
Score-based fusion of multiple independent models for the
purpose of identifying speakers is widely used as it reduces
the identification error rate significantly. In this work, a
speaker identification system for low-quality speech which
has been propagated through telephone and communica-
tion channels is proposed. The system consists of 15 mod-
els based on 5 features as well as a Neural Network struc-
ture for the task of fusing the classification scores resulting
from the individual models. Its performance is evaluated in
closed-set speaker identification experiments conducted on
the Switchboard corpus. Furthermore, the proposed Neu-
ral Network architecture is compared to other fusion tech-
niques such as taking the mean, a Majority Voting, an Evo-
lutionary Algorithm and Logistic Regression.

1 Introduction
Classically, speaker recognition systems are based on a sin-
gle feature extracted from given speech data, mostly Mel-
Frequency Cepstral Coefficients (MFCCs) [1]. These fea-
ture vectors are used to train a so-called Universal Back-
ground Model (UBM) [2] which is a Gaussian Mixture
Model trained on data of various speakers. The UBM is
adapted towards single speakers in a step called “enroll-
ment” to attain speaker-specific models. By concatenat-
ing the means of the adapted Gaussian components, one
obtains high-dimensional supervectors which serve as a
fixed-size representation of the speech data. To reduce
the dimension of these supervectors, first an i-vector model
[3], which is a simplification of Joint Factor Analysis (JFA)
[4], and second Probabilistic Linear Discriminant Analy-
sis (PLDA) [5–7], which is essentially JFA applied to i-
vectors, is used. For a more detailed review of the named
methods, the reader is referred to [8].

It is well known that the performance of a fused clas-
sification model is always better than the best individual
model if the models are making independent errors (see
e.g. [9]). Therefore, many successful attempts have been
made to fuse multiple models based on different features
or use additional discriminative classifiers as for example
Support Vector Machines [10–13].

Scores of multiple classifiers are most commonly fused
with a weighted sum, although several techniques to com-
bine the scores exist (see e.g. [14, 15]). But when the
number of statistical models involved increases, the weight
space grows exponentially. Hence, naively searching in
the weight space is computationally infeasible. To address
this issue, different techniques such as Logistic Regression
(LR) or shallow Neural Networks with no or only one sin-
gle hidden layer [16, 17] have been used to find the right
weights. Usually, deeper Neural Networks are not used for
that purpose although they have been successfully applied

in the context of speaker recognition by evaluating the pos-
teriors of the UBM, extracting features or speaker embed-
dings and even doing end-to-end Speaker Recognition (see
[16, 18–21]).

The goal of this work is to have a robust speaker identi-
fication system for telephone and communication channels
especially focusing on a small number of speakers (e.g.
10). For this purpose, a speaker identification system using
5 different features and for each of them 3 statistical mod-
els will be presented. The three models are (i) the stan-
dard i-vector/PLDA model with (ii) the underlying UBM
and (iii) dimensionally reduced versions of the Supervec-
tors via Principal Component Analysis (PCA) and PLDA.
As another main contribution, we propose to use a Feed
Forward Neural Network with a speaker-independent and
a speaker-dependent layer for fusing the obtained classifi-
cation scores of the models. In speaker identification ex-
periments conducted on the Switchboard corpus, we will
evaluate the speaker identification system and compare the
Neural Network to other score-based fusion techniques.

2 The Speaker Identification System
The speaker identification system we propose is based on 5
features. In addition to the widely used MFCCs, comple-
mentary features based on Pitch, Glottal Mixture Models
(GLOMMs) [22, 23], Perceptual Linear Prediction (PLP)
[24] and Spectral Subband Centroids (SSCs) [25] are all in-
cluded into the system because a single feature cannot cap-
ture all speaker relevant information. Though it has been
shown that fusing some of these features is highly benefi-
cial (see [23, 26, 27]), this is the first speaker identification
system utilizing all features together.

The distribution of each feature is captured by another
UBM resulting in five high-dimensional supervectors for
every utterance after enrollment. Therefore, applying di-
mension reduction techniques to the supervectors is even
more important when using multiple features. However,
none of them perfectly keeps all relevant information and
dismisses the rest. Hence, combining multiple dimension
reduction techniques with the information they are operat-
ing on, i.e., the UBM itself, intuitively seems to be ben-
eficial. More concretely, for each of the 5 features, the
standard i-vector/PLDA model is fused with the underlying
UBM as well as dimensionally reduced versions of the su-
pervectors to compensate for the loss of information when
applying dimension reduction techniques. Fig. 1 shows
our proposed score-extraction scheme.

3 Score-Based Fusion Techniques
A frequently used method to perform score-based fusion is
to take a weighted linear sum of all M ∈ N models’ scores
with one scalar weight wm,m = 1, ...,M for each differ-
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Figure 1: Extraction of the scores for a single feature

ent model θm,m = 1, ...,M (in our case M = 15). This
corresponds to computing

O(s|x) :=
M

∑
m=1

wmO(s|θm,x)

whereO(s|θm,x) denotes the classification score for target
speaker s ∈ S given fixed feature vectors x from some
feature space and a model θm . The actual classification
is done by returning the argmax of the fused classification
scores as the classification result.

Finding the weights that yield the best performance
needs to be done experimentally. In practice, naively search-
ing the resulting M -dimensional weight space is computa-
tionally infeasible, due to exponential growth, which is the
reason why other techniques need to be applied.

Simple techniques that require no training do exist. One
of them is a Majority Voting (MV) which means to classify
with each model individually and use the class most mod-
els agree on. Another one is to simply take the mean which
is equivalent to setting all fusion weights equal to 1. How-
ever, their general drawback is that they treat every model
equally regardless of performance. In case that some mod-
els perform significantly worse than others, this leads to
highly suboptimal results.

3.1 Evolutionary Algorithm
One possible solution to search the full weight space is to
apply an Evolutionary Algorithm (EA) [28]. Its basic idea
is to initialize a random population (of weight vectors) and
optimize it by simulating evolution. We used a population
of 2000 individuals uniformly distributed on the multidi-
mensional open interval (0,1)M ⊂RM . Then, we repeated
the following steps for 100 iterations:
– Fitness evaluation: compute classification accuracy by

fusing scores weighted with an individual
– External selection: keep best 10% of the entire popula-

tion
– Inheritance: with a chance of 95% take the mean of

two random parents, otherwise initialize the child uni-
formly distributed on (0,1)M

– Mutation (only applied to children): for each dimen-
sion independently, multiply in 40% of the cases with
a uniformly distributed number in (0,2)

At the end, one individual yielding the highest classifica-
tion accuracy is kept as the result.

3.2 Logistic Regression
The basic idea of Logistic Regression (LR) [29] is to find
the fusion weights by training a discriminative model for
classification. In order to map the scores to class probabil-
ities, the softmax function, which is a multi-dimensional
generalization of the logistic function, is applied. It is
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Figure 2: Structure of the Neural Network (NN)
given by

P (s|x) :=
exp

(
∑

M
m=1wmO(s|θm,x)

)
∑t∈S exp

(
∑

M
m=1wmO(t|θm,x)

)
for speaker s ∈ S . One can train this model to match
the target distribution given by the categorical labels e.g.
by minimizing the categorical crossentropy via gradient
descent. In other words, the goal of training is to have
P (s|x) = 1 if x belongs to speaker s and P (s|x) = 0 else.

3.3 Neural Network
The Neural Network (NN) used for fusing all classifica-
tion scores consists of 2 layers (see Fig. 2), a model spe-
cific fusion layer (L1) and a speaker specific decision layer
(L2). Both layers are trained individually, one after an-
other, to reduce the effect of overfitting to the validation
data which easily happens when directly operating on the
scores. Additionally, we applied early stopping by moni-
toring the training loss.

The first layer consists of two preprocessing steps: First
the classification scores are centered and normalized to
have a standard deviation of 1. Secondly, a hyperbolic tan-
gent with a single global weight w0 ∈ R and bias b0 ∈ R
is applied. This layer serves as a global boundary distin-
guishing between scores belonging to positive and negative
examples. After that, the scores are fused with a weighted
sum and the weights are found via LR. This is achieved
by applying the softmax function and minimizing the cat-
egorical crossentropy via Backpropagation of Error. Note,
that the standard notation of the term layer is abused be-
cause, strictly speaking, the fusion layer itself consists of
two layers of a Neural Network.

To improve robustness, the idea of the second layer (the
decision layer) is to differentiate between positive and neg-
ative examples by using another, individually trained, deci-
sion function for each speaker. Mathematically, the goal is
that likelihoods of positive examples are mapped to a value
of 1 and likelihoods of negative examples are mapped to
−1. Thus, the speaker dependent transfer function decides
whether the underlying speech data of a likelihood value
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Figure 3: Modified hyperbolic tangent

belongs to the corresponding speaker or not. For this pur-
pose, a modified hyperbolic tangent, which is given by

modtanh : [0,1]→ [−1,1]
y 7→ tanh(λ(y−µ))(y(y−1)+1)

with decision boundary µ ∈ [0,1] and sharpness λ ∈ R+,
is used as a decision function. Throughout the paper we
will use µ= 0.5 and θ = 12 as initial values for the param-
eters. Note, that multiplying with the term (y(y− 1)+ 1)
prevents that the gradient vanishes at the boundary of the
interval [−1,1]. This is done because values are very likely
to be chosen as the classification result when being large
and very unlikely to be chosen when being small and thus
are of particular interest. See Fig. 3, for a visualization of
the decision function. All parameters µ1, ...,µN ,λ1, ...,λN ,
N ∈ N of this layer are trained by minimizing the squared
error via Backpropagation of Error.

As said before, we consider closed-set speaker iden-
tification tasks where K ∈ N speakers are selected out of
a database consisting of N >> K speakers. In order to
have a single Neural Network which can be used regardless
of the actual choice of these speakers, individual decision
functions for each of the N speakers need to be trained.
Thus, the likelihood table must be extended first by enter-
ing likelihoods with a value of 0 for all speakers who have
not been considered for identification in a specific test. As
an example, consider the case where one wants to classify
among K = 10 speakers, which is the size of the output
of the fusion layer, but has a database of N = 212 speak-
ers. Then, a likelihood of 0 is entered for the remaining
N −K = 202 speakers. This needs to be done, in order
to know the speakers to whom the likelihood values corre-
spond to and to be able to train speaker specific decision
functions. After applying the decision functions, the like-
lihood table can be shrunk by removing the dummy zeros,
which have been mapped to a value of −1, again.

An example of the outputs of the L1 and L2 layer can
be found in Fig. 4. Applying the decision function without
training only pushes all values towards 1 and −1 respec-
tively (compare a) and b)). Therefore, the classification
results are exactly the same when not training the decision
layer because, initially, the decision function is the same
for all speakers and strictly monotone increasing. The goal
of training is to have fewer values in the upper left (false
positives) as well as in the lower right area (false nega-
tives) because those values certainly lead to misclassifica-
tions. As one can see when comparing b) and c), the train-
ing helps to thin out those areas i.e. reduce the number of
false positives and false negatives and therefore lower the
identification error rate.
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Figure 4: Outputs of the Neural Network at (a) the fusion
layer, (b) the decision layer without training and (c) the de-
cision layer after training. In this example, only GLOMM
features have been used.
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Figure 5: Structure of the Cascaded Neural Network

3.4 Cascaded Version of the Neural Network
A variation of the presented Neural Network (NN) is to
first fuse the three models for each feature and fuse the
resulting likelihoods afterwards by applying the NN struc-
ture in both cases. This variation will be called Cascaded
Neural Network in the following and is visualized in Fig.
5. Again, this prevents the Neural Network from overfit-
ting because all layers are trained individually and there-
fore only parts of the complete information can be accessed
in each training phase as some of it is lost or not available
yet.

4 Experiments
4.1 Experimental Setup
The performance of the proposed speaker identification sys-
tem will be evaluated with closed-set speaker identification
experiments on a subset of the Switchboard-1 Release 2
corpus [30]. It consists of data sent over telephone and
communication channels which is suitable for closed-set



Table 1: Identification error rates obtained without fusion.
feature UBM i-vector/PLDA PCA/PLDA

MFCC 5.56% 3.21% 4.30%
GLOMM 12.52% 10.55% 14.10%
pitch 42.45% 41.74% 40.84%
PLP 5.58% 2.50% 3.92%
SSC 17.84% 11.87% 13.76%

speaker identification experiments because there is a suf-
ficient number of files per speaker. As a first preprocess-
ing step, a Voice-Activity-Detector (VAD) which combines
the speech detection algorithm given in [31] with the audio
features of kurtosis and spectral entropy has been applied
to the data. Furthermore, only 212 speakers out of all avail-
able speakers, each with 10 audio files, have been used. To
compensate for crosstalk, each file has been reduced to a
length of 5 seconds composed of short segments where no
energy has been detected in the other speaker’s channel.
As a result, it is ensured that each audio file captures only
a single speaker.

For each speaker, 6 of the 10 files i.e. 30 seconds, have
been used for training the UBM, i-vector and PLDA mod-
els which have been trained with the fastPLDA toolkit [32].
2 of the 4 remaining files have been labeled as test data
and the other 2 were used as validation data to tune the nu-
merous hyperparameters of the models. Furthermore, the
scores extracted from the validation data were used to train
all fusion models and be able to check their generalization
capablities with the test data.

We used the HTK toolkit [33] to extract MFCCs and
PLP features. Both are 19 dimensional and were computed
on 25ms long frames with 10ms overlap. The GLOMM
features have been computed with the algorithm for tele-
phone channels described in [23]. For extracting the pitch
features, the signals were divided into overlapping Hanning-
weighted frames and for each of them the autocorrelation
function (ACF) was computed. Next, the highest ACF
value in the range of human pitch was detected. Its po-
sition is the pitch period and its value normalized with
the value at zero is the pitch amplitude. As humans per-
ceive pitches logarithmically, we applied the logarithm to
the pitch period. Then, each pitch feature is defined as a
two-dimensional vector consisting of those two values. To
extract the SSC features, the procedure described in [27]
has been used.

To compute the classification scores, we sampled 500
sets consisting of 10 randomly chosen speakers and used
the same fixed sets to evaluate the models with both val-
idation and both test files. In conclusion, we conducted
500 ·10 ·2 = 10000 independent speaker classification tri-
als for each test. The error rates of all 15 models can be
found in Table 1. Using the centered and normalized re-
sulting scores extracted from the validation data, we then
applied the different fusion techniques presented in section
3. We used the BOSARIS toolkit [34] (with the default ob-
jective function and a prior of 0.1) to apply LR. The results
were then used to compute the corresponding identification
error rates on previously unseen test data.

4.2 Experimental Results
The results obtained in the score-based fusion experiments
can be found in Table 2. First, it is visible that fusing all
three models significantly improved the identification error

Table 2: Comparison of different fusion methods.
feature mean MV EA LR (L1) NN

MFCC 3.85% 3.82% 3.10% 3.21% 2.86% 2.68%
GLOMM 9.68% 10.11% 9.11% 9.11% 9.04% 8.65%
pitch 39.09% 40.02% 39.16% 38.63% 38.55% 38.45%
PLP 3.37% 3.32% 2.30% 2.52% 2.34% 2.27%
SSC 11.15% 11.53% 10.49% 10.40% 10.24% 10.44%

all 2.65% 2.63% 1.91% 1.94% 1.90% 1.83%
all (cascaded) - - 2.07% 2.08 - 1.76%

rates regardless of the actual features being used (compare
Table 1 and 2). In addition to that, the EA, LR and the
Neural Network performed much better than simply tak-
ing the mean. Moreover, the performance may actually
get worse when fusing the scores by taking the mean (e.g.
PLP: 2.50%→ 3.37%). The same is true for the MV, as the
performance was mostly even worse than when taking the
mean. If all 15 models of all features were used, the error
rates of the mean and MV were roughly the same and bet-
ter than any individual model but still much higher than the
other 3 fusion techniques. Comparing those 3 techniques,
one sees that the Neural Network delivered the lowest error
rates except for SSC where it was slightly worse than LR.
To see the effect of the L2 layer on the error rate, we also
state the error rates obtained with L1 only. In genereral,
the full NN performed better than L1 alone with SSC be-
ing the only exception again. We also experimented with
using additional layers but this did not improve the results.
As expected, the cascaded fusion led to worse performance
when using the EA or LR because only a subspace of the
total weight space is covered. However, the performance
of the cascaded NN was better than the original NN.

Since the pitch features alone performed much worse
than any of the other features, we also evaluated the cas-
caded NN without pitch which led to an identification error
rate of 1.94%. In conclusion, the pitch features are con-
taining additional information and thus are an important
component of the system.

5 Conclusions and Future Work
In this work, a Neural Network architecture used to fuse
scores of a speaker identification system for applications
with telephone quality has been presented. The system
consists of three speaker identification models (UBM, I-
vector/PLDA and Supervector/PCA/PLDA) based on five
complementary features (MFCC, GLOMM, Pitch, PLP and
SSC). As shown in closed-set experiments on Switchboard,
fusing the three models always reduces the error regard-
less of the features being used. Additionally, the proposed
Neural Network consisting of a model-specific fusion and
a speaker-specific decision layer led to slightly better re-
sults than all other approaches when encountering previ-
ously unseen test data.

For the future, we plan to complement the presented
system with other deep Neural Networks which extract fea-
tures or do end-to-end speaker recognition. By jointly train-
ing our proposed Neural Network used for fusing every-
thing with the other ones which serve as an input, an addi-
tional improvement may be achieved. Furthermore, evalu-
ating the system with a recent NIST Speaker Recognition
Evaluation task will be helpful for comparing the perfor-
mance of the speaker identification system to performances
obtained with other systems.
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